NAVAL POSTGRADUATE SCHOOL
Monterey, California

D-A283 104 &
NERRAUIE Q0000930066

94-252 Q( T
A Nﬂfl!'f”llllullfww CQ\

REMOTE SENSING, PROCESSING AND
TRANSMISSION OF DATA FOR AN
UNMANNED AERIAL VEHICLE
by
Donald Benton Howard

June, 1994

Thesis Advisor: : Michael K. Shields

Approved for public release; distribution is unlimited.

DTIC Qu.gi mgr'*SC"nD 11 0 0 0 6

Reproduced From
- Best Available Copy

- g e e P ST
-

|
ﬂ T

i E :L Y
LEC £ \fl




REPORT DOCUMENTATION PAGE " | Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this coliection of information, including suggestions .or reducing this burden, to Washington Headquarsters Services.
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and <o the Office of Management
and Budget, Paperwork Reduction Project (0704-0138) Washington DC 20503.

1.  AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
' June 194 Master's Thesis

4. TITLE AND SUBTITLE REMOTE SENSING, PROCESSING AND 5. FUNDING NUMBERS
TRANSMISSION OF DATA FOR AN UNMANNED AERIAL

. VEHICLE (U)
6. AUTHOR(S) Howard, Donald Benton
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ' ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
' AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

13. ABSTRACT (maximum 200 words)

This thesis chronicles the development of a proof-of-concept, stand-alone, Unattended Ground Sensor

(UGS) that can be used to sense and process signals associated with the motion of large vehicles, troops,

or aircraft. The resuits of this signal processing are then transmitted to an Unmanned Aerial Vehicle

(UAV). The UGS uses acoustic and seismic sensors to provide data to a Digital Signal Processing (DSP)

computer. Digital signal processing algorithms can be independently developcd in the C programming

language and lmked with the software developed for this project. _

14. SUBJECT TERMS Unmanned Ground Sensor, UAV, Digital Signal Processing | 15. NUMBER OF
PAGES 98
16. PRICE CODE
17. SECURITY CLASSIFI- | 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF REPORT CATION-OF THIS PAGE CATION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL
D T N T ST
Standard Form 298 (Rev. 2-89)

NSN 7540-01-280-5500
Prescribed by ANS! Sid. 239-18

i




T T T T e g o DAL e St

Approved for public release; distribution is unlimitéd.
Remote Sensing, Processing and
Transmission of Data for an
Unmanned Aerial Vehicle
by
Donald Benton Howard
Lieutenant, United States Navy

B.S., University of Kansas, 1988

Submitted in partial fulfillmext
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL,
June 1994 )

Author: . ‘J..‘/ %J 74/

TR ’”’T"”"W!*f"q
. |
.

Donald Benton Howard

Approved by: 777 l< . Mﬁq

Michael K. Shields, Thesis Advisor

Mo X T So

Murali Tummala, Second Reader

LN s

Michael A. Morghfl, Chairman
Department of Electrical and Computer Engineering




ABSTRACT

This thesis chronicles the development of a proof-of-concépt, stand-alone,
Unattended Ground Sensor (UGS) that can be used to sense and pr@cess signals
associated with the motion of large vehicles, troops, or aircraft. The f:‘sults of this
signal processing are then transmitted to an Unmanned Aerial Vehicle (UAV). The
UGS uses acoustic and seismic sensors to provide data to a Digit.ﬂ Signal
Processing (DSP) computer. Digital signal processing algorithmé can be
independently developed in the C programming language and link;d with the

software developed for this project.

. Accesation Yor

DTIC TAB
Unannounced
Justification

NTIS GRASL &
a
a

By

Distridution/ ..,

Availability Codes

. vall and/or
i1 Dist Special

pl




I.

II.

III.

TABLE OF CONTENTS

INTRODUCTION . . . .

A.
B.

PROBLEM STATEMENT .

THESIS SCOPE . . .

BACXGROUND . . . . . .

A.

A.

UNMANNED AERIAL VEHICLE (UAV)

1.

UNATTENDED GROUND SENSOR (UGS)

1.
2.

The UAV's

Gathering . .

Uses in the Vietnam Conflict

Uses in Tomorrow’s Conflicts

SUMMARY . . . . . .

UGS HZRDWARE DESIGN CONSIDERATIONS
SENSING DEVICE REQUIREMENTS

1.
2.
3.
4.
5.

Acoustic Seasor .

Seismic Sensor

Pressure Sensor
Magnetic Sensor
Global Position

.

Sensor (GPS)

Suitability

TRANSMISSION REQUIREMENTS .

1.

Message Format

iv

L]

Ihtelligence

12

12

13
13
14
14
15
15
16
16
16




Iv.

' 2. Transmitter Interfaie . . . . . . . . .
3. Transmitter Requirements . . . . . . . .
C. DIGITAL SIGNAL PROCESSOR (DSP) REQUIREMENTS .
Speed . . . . . e e e e e e e e e e e e

Cost- ; v e e e e e e e e e e e e e
I/0 Capabilities . . . . . . . . . ...
Signal Processing Capabilities . . . . .
SIZE . v v e e e e e e e e e e e e e

Energy Consumption . . . . . . . . . . .

Developmental Support . . . . . « « '«

® N o0 W N

Technical Support . . . . + ¢« ¢ « « &« +« =«
D. POWER SUPPLY REQUIREMENTS . . . . . « « « +« =«

E. SUMMARY . « v v v o v o v v e e e e e e e o

UNATTENDED GROUND SENSOR HARDWARE . . . . . . .

A. DIGITAL SIGNAL PROCESSOR BOARD . . . . . . .
SENSING DEVICES . . . « + « o v o o v o . .

C. TRANSMITTER . . . + « « v o ¢ 4 o v o v o o

D. POWER SUPPLY . . + « &« ¢ & o & o o o o o o &

E. SUMMARY . . « & ¢ v ¢ v o v v v o v v o a e

SOFTWARE DESIGN CONSIDERATIONS AND IMPLEMEINTATION
A. PROBLEM DEFINITION . . . « + ¢ &+ &« o « « o «

B. SOLUTION ALGORITHM . . . . . ¢« ¢ ¢ ¢ « o« « &
C. ALGORITHM ENCODING AND DEBUGGING . . . . . .

D. MODIFICATIONS FOR STAND-ALONE OPERATION . .

17

20
20
20
21
21
21

21

22
22
22
23

25
26
30

32

34
35

36
36
37
42
49




VI. CONCLUSIONS AND RECOMMENDATIONS

APPENDIX A:
APPENDIX B:
APPENDIX C: PROGRAM SOURCE CODE
APPENDIX D:
| LOADING . O

LIST OF REFERENCES . . . . .

INITIAL DISTRIBUTION LIST . .

DSP BOARD SUMMARY

vi

FLOW DIAGF .IS FOR FILE 2105_HDR.DSP

PROCEDURES FOR COMPILING NEW CODE AND EPROM

50

52

54

55

61

- 85

88

89




ACKNOWLEDGMENT

I would like to thank Professor Shields and Professor
Tummala for their patience and guidance during the development
of this thesis. .‘Their enthusiasm for research is very
contagious. I would also like to thank Gordon Sterling of
Analog Devices and Farid Dibachi ofIWavetron Microsystems for
enduring my many questions. Most importantly, I would like to

thank Alice, Caitlin, and Christianna for their support and

understanding. |
|
!
|
|

vii




I. INTRODUCTION

A. PROBLEM STATEMENT

Unmanned Aerial Vehicles (UAV) have been under development
for some time. They have énjoyed a degree of success in
operational environments. Recently, during Operation Desert
Storm, it became evident that UAVs could make a significant
contribution to a warfighting effort. As technology has
advanced, so too has the number of possible missions that can
be undertaken by an UAV. Much of the progress in UAV
teéhnology can be attributed té the development of fast, small
computers. The Naval Postgraduate School is taking advantage
of these advances in computer technology and electronic
miniaturization in an ongoing research project to develop
several UAV platforms including a Vertical Takeoff and Landing
(VTOL) UAV called Archytas. As this ﬁroject nears the
operational testing phase, more and more missions are being
envisioned. |

One of the missions being considered is the gathering of
intelligence from ground detectors. The detectors could also
take advantage of state-of-the-art miniaturization and
computer technology. Many small iow power digital signal

processing (DSP) circuit boards are presently on the market.




These DSP boards could be used to sample data from sensors,

process this data, and send only the results to an UAV.

B. THESIS SCOPE

This thesis describes the design and construction of an
inexpensive, compaci:, self-contained detection device, capable
of processing and transmitting data. The device was designed
using current oft-the-shelf (COTS) technology hérdware.‘ The
process used to design, buiid, and test such a device is
detailed in the following chapters. This device will be
referred to as Unattended Ground Sensor'(UGS). |

Chapter II is a background chapter describing the
suitability of an UAV as an intelligence éathering device.
There is also a discussion in this chapter about the history
and the future of UGS systems. Chapter III addresses thé‘
hardware design requirements for the UGS. The fourth chapter
discusses possible solutions to the design problem. It also
describes the equipment chosen to fulfill the design
requirements. Chapter V covers the software design
objectives. It also describes the programming philosophy and
solutions used in this design. The concluding remérks and
recommendations for future development are contained in
Chapter VI.

The device described herein is not suitable as the final

solution to the UGS/UAV combination. It is a technology

demonstrator and a good test bed for DSP algorithm testing.




It is also an excellent platform for UAV/UGS data 1link

testing.




IX. BACKGROUND

The timely collection and evaluation of battlefield
intelligence has always been paramount to the success of any
warfighting scenario. This is still very true in today's
world. Recent advances in computer and micro-controller

technologies have breathed new life into some old techniqucs

of intelligence gathering.

The Naval Postgraduate School (NPS) in Monterey, CA has
been involved in a projéct that makes use of these ad?anées in
technology to design Unmanned Aerial Vehicles (UAVs). The

potential of the UAV is best stated in the DoD, 1993 Unmanned

Aerial Vehicles (UAV) Master Plan:

Unmanned Aerial Vehicles (UAVs) can make significant
contributions to the warfighting capability of operational
forces. They greatly improve the quality and timeliness
of battlefield information while reducing the risk of
capture or loss of troops, thus allowing more rapid and
better informed decision making by battlefield commanders.
They are cost effective and versatile systems. While
reconnaissance, surveillance, and target acquisition
(RSTA) are the premier missions of UAVS, they can also
provide substantial capabilities in electronic warf?re
(EW), electronic support measures (ESM), mine detection,
command and control and special operations mission areas.
UAVs are a particularly valuable adjunct to the Services’
aviation communities. They can readily perform | a
multitude of inherently hazardous missions: those in
contaminated environments, those with extremely logg
flight times and those with unacceptable political risks
for manned aircraft. Allotting these dirty and dangerous
missions to UAVs increases the survivability of mann
aircraft and frees pilots to do missions that require th
flexibility of the manned systemn. UAVs are a viable
alternative as the Services wrestle with the many
challenges of downsizing the force structure.[Ref. 1]



As indicated above the potential tasks for an UAV are nearly
limitless.

One enhancement to the RSTA mission mentioned above is to
use the UAV as a central collection point for intelligence
transmitted by Unattended Ground Sensors (UGS). With current
technclogy, it is feasible to build a small UGS that can sense
environmental parameters, detect changes in them, and identify
the source that caused these changes. All of this can be done
by a small standalone unit the size of a 12 oz. soda can.

This chapter will discuss the characteristics‘unique to an
UAV Fhat make it ideally suited for intelligence gathering.
In a&dition, it will describe the employment and contributions
of ﬁﬂmanned ground sensors in the Vietnam Conflict. Finally,
this chapter will discuss the potential of devices similar to

those used in Vietnam that utilize current technology.

A. UNMANNED AERIAL VEHICLE (UAV)

éurrently there is considerable interest in the research
and dévelopment of Unmanned Aerial Vehicles (UAVs). UAVs are
an e*cellent compromise between the inexpensive, dumb drone
and the expensive, but versatile manned aircraft. This
section describes the UAV's suitability for intelligence
gathering. |

1. The UAV’s Suitability for Intelligence Gathering

Ideally an intelligence gathering device would have

the following qualities:




¢ Inexpensive.
« Expendable.
e Low probability of‘being detected by the enemy.

e Low probability of destruction by enemy.
e Low failure rate. '
¢ Mission flexible.

e Minimum risk to friendly lives.

A drone is relatively inexpehsive when compared to a ﬁanned
aircraft and is often expendable. prever. it lacks mission
flexibility once it has been launched. For example, if the
drone detected an event worth further investigation during its
flight, it could not turn around and take a second lcok. This
inability to react to real time occurrences is. a severe
limitation in intelligence gathering. On the other hand, a
manned aircraft is infinitely more'flexible, but it also puts
human life at risk. This means that the situations most worth
investigating will not be pursued because they are too risky
to human life.

Recent advances in technology have made it feasible to
build a highly survivable, High-Altitude-Long-Endurance (HALE)
UAV. The issue of survivability can be broken down in:o two
separate categories, susceptibility and vulnerability.
Susceptibility is a measure cf the ease with which a system

can be detected and attacked. Vulnerability is an indication

of a systems ability to continue its mission once it has been




attacked. Both susceptibility and wvulnerability must be
minimized to increase survivability. One method to reduce
suéceptibility is to give the system the ability to defend
itself. Susceptibility can also be minimized by reducing
radiated or reflected signatures. The second method decreases
susceptibility by lowering the prob;bility of detection and
thereby, maintaining covertness. If the UAV is not detected,
it will not be fired upon.[Ref. 2]

The physical characteristics of an UAV will inherently
minimize its probability of being detected. The advent of
miniaturized electronics allows for the use of small, powerful
compuﬁers for. flight control. Other crucial electronic
systems, such as the Inertial Navigation System (INS) and the
Global Positioning Systems (GPS), have also been reduced in
size. These developments tend to reduce the airframe size.
It is obvious that a small UAV is harder to be seen thah a
larger manned aircraft. 'This is particularly tfue when the
small UAV is flying at a high altitude. However, size can
also be related to the radar cross-section of the UAV. Since
UAVs are designed to carry smaller payloads than manned
aircraft, their airframes are smaller. This can transiate
into a Smaller engine. The use of nonmetallic, composite
materials in airframe construction also tends to reduce the
total weight and by that allow for a smaller engine. By using

smaller engines (less metal) and nonmetallic materials in the




airframe construction, the radar cross-section can be reduced
to achieve a lower probability of detection.[Ref. 2] '

The use of a small engine in the'UAV hés the potential
to reduce the amount of radiated noise and heat to a level
below that generated by a manned aircraft. The minimization
of heat and noise generation will also lower the probability
of UAV detection. [Ref. 2]

To be an effective real-time intelligence gathering
tool, the UAV must transmit data to a control station. The
process of transmitting could compromiseithe UAV and make it
more detectable. Fortunately, the use of Spread Spectrum
communication techniques can reduce the probability ozx
detection to acceptable levels.[Ref. 2] - |

Vulnerability is the other component of survivability.
Vulnerability is a measure of the inability of a system to
continue operating after it has taken a "hit.®* One method to
lower the vulnerability of a systeﬁ is to hake it tougher.
This can be done by physically protecting vital systems.
Tough composite materials such as Kevlar or Gldss Reinforced
Plastic (GRP) used in the construction of many UAVs will act
like Armor protecting vital systems and reducing
vulnerability.[Ref. 2]

Cost as well as survivability must be considered in
the evaluation of an intelligence gathering system. The cost

of an UAV is usually between that of a drone and a manned

aircraft. Normally the cost of an UAV is too high to consider




it expendable, but low enough to mzke it a cost-effective
alternative to a manned aircraft. |

An UAV can be an inexpensive, highly-survivable,
mission-flexible tool. Additionally, because UAVs have a much
lower probability of detection than manned aircraft, théy are
less likely to effect the actions of ;he eremy and thus
provide better intelligence. All of these factors combine to

make a HALE UAV the perfect instrument for gathering

intelligence.

B. UNATTENDED GROUND SENSOR (UGS)

The Unattended Ground Sensor can play an integral part in
battlefield intelligence gathering systems. Their utility was
proven during the Vietnam conflict.[Ref. 3] Even greater use
can be made of the UGS by incorporating some of today’s
technology.

1. Uses in the Vietnam céntlict

Vietnam saw the first use of Unattended Ground Sensors
using a radio link to a remote monitor [Ref. 4)]. In Reference
5, John Bergin states:

In 1966 the United States\began to build an electronic
barrier of acoustic, seismi¢, and radio sensors across the
northern border of South Vietnam, the panhandle of Laos,
and the eastern regions of Thailand to detect North

Vietnamese infiltration.[Ref. 5]
Bergin goes on to explain th;f these sensors were seeded by
air along the McNamara line. ery relayed the detected sounds

to on-station monitoring aircraft. This information was then




usea to vector in air strikes against the most promising
targets. Around 1968 General Westmoreland started using some
sensors to monitor the perimeters of Marine bases. "They were
so successful in warning of énemy movements and identifying
targets for artillery and air support that General
Westmoreland obtained permiscsion to postpone the completion of
the McNamara® Line to use the sensors in tactical
operations."[Ref. 5]
The reviews of these new state-of-the-art devices were
nearly all-positive. Assertions were made at Congressional
‘ings on the electronic battlefield that these devices were
1;. nsible for 1lowering the American death rate from 12
percent to 3 percent. In addition, claims were made that a
battalion with the sensors could monitor twice the area of a
nonsensor equipped battalion.[Ref. 3]
Although these sensors were successful, they had some
serious drawbacks. The first drawback was that they were

bulky thus making them difficult to deploy and easy to sight.

This problem was partially addressed Ly camouflaging them as

vegetation. [Ref. 5]
The second drawback was due to the short battery life

of the detectors. When the sensor batteries were exhausted or
near the end of their useful life, patrcls had to L. deployed
to replac: the batteries. These battery replacement patrols

exposed the troops to unnecessary dangers.

10

L2




A third drawback to the Vietnam era UGS was their
inability to process raw.data. Reference 4 states, "The
sensor signal must be processed and transmitted over a data
blink, should ideally only transmit when a significant event
has occurred ...." The Unmanned Ground Sensors used in
Vietnam had to continuously transmit their data to a néarby
aircraft. This made the sensors vulnerable to detection and
location by radio direction finding equipment.

The final drawback stemmed from the fact that manned
aircraft were used to investigate sensor events. Unlike an
UAV, these aircraft were large and loud making them counter
" detectable by the simplest of means. This allowed the enemy
the opportunity tc alter their actions and avoid further
detection.

Since the Vietnam war, the UGS concept has evolved
through a series of programs. The Army started a program in
1972 to develop an all-weather, all-terrain, REmote Monitored
Sensor System (REMBASS). This system was intended for
division level use and incorporated the Platoon-level Early
Warning System (PEWS). The PEWS became operational in 1980.
An Improved REMBASS (IREMBASS) system began development in the
late 1980’s. The system developed here will be very much like
REMBASS, but with improved signal processing

capabilities.[Ref. 6]

11




2. Uses in Tomrrrow’s Conflicts

All of the applications above have one thing in
common. They have relied on either a manned aircraft or
ground station to ccliect and relay or analyze the data frdm
the Unattended Ground Sensors. It is possible, with the
advances in computing power and data storag:, to build an UGS
that can analyze the sensed data on‘its own. The UGS would
then only need to transmit to relay stations or an UAV when
the detection criterion has been met. If this UGS technology
were to be coupled with an UAV as the receiver, sensor
detections could be immediately investigated with a low
probability of counter detection. The UAV could then transmit

video and infrared information to a command center for further

evaluation.

C. SUMMARY

Although sensor systems in the past have been successful,
their performance could be erhanced further with .t‘?
application of modern technology. The UGS/UAV combination has
great potential for safe, inexpensive, accurate, and stealthy
intelligence gathering. The application of this system could

range from the detection of men and vehicles to the detection

of a ballistic missile launch.

12



IIXI. UGS HARDWARE DESIGIY CONSIDERATICNS

~ As is true for any system, many design factors must be
considered to produce the best product possible. Among these
factors are capabilities, cost, size, weight, and power
requirements. This proof-of-concept UGS rust meet the
following general design requirements. It should be a highly
capable, stancdalone, digital signal processing unit that is
small enough to fit'in a container the size of a 12 oz. soda
can. It hust also be capable of ser<ing various environmental
pafameters, processing this information, determining if the
detection criterion'is satisfied, and notifying the UAV that
a detection has occurred.

The primary goal of this design is to produce a product
that meets all of the general design requirements. In
addition, it must be constructed using low cost, commercial
off-the-shelf (COTS) components. This chapter details the
design approaches considered in each of the four major

hardware categories.

A. SENSING DEVICE REQUIREMENTS

There were five environmental parameters that were
considered in developing this device. These parameters were
chosen for evaluation based on their possible applicability

and on the environmental sensors that are readily available on

13




the commercial market. The sensors ‘considered for use in

this design were acoustic, seismic, pressure, magnetic, and

global position sensing (GPS) devices. This section discusses

each of these sensors and their applicability to this project.
1. Acoustic Sensor ‘

An acoustic sensor can be a simple microphone. This
type of sensor has several advantages. . Microphones are small,
light weight, and have very low'energy consumptioh. They are
also readily available. As a sensor it can be used to detect
an object of interest w..en that object is loud, but not in
close physical proximity. Most microphones have a cycloid
beam pattern. This can be a disadvantage if the orientation
of the microphone cannot be controlled or if the éxact
location of the target of interest is not known. There are
somé microphones available, however, that have good fidelity
ranges and a hemispherical beam pattern. It was determined
that a microphone with a hemispherical beaﬁ pattern and a
frequency response of 50 Hz to 18,000 Hz was necessary for our
particular application. '

2. Seismic Sensor

A seismic sensor can measure very small movements of
the sensor itself. If the sensor is in solid contact with a
surface, it will measure the movement of that surface. These

movements can be detected at frequencies as low as 10 Hz.

14




Seismic sensors can vary greatly in size, weight, and
cost. One sensor investigated weighed 3.3 pounds and had a
volume of 25.8 ir’. Another sensor weighed only 1.8 oz and
had a vdlume of 0.61 in®. The cost of these sensors ranged
| from as high as several thousand dollars to as low as a few
hundred dollars. ‘

The design requirerients specify that the UGS must be
small; therefore, the seismic sensor should be as small as
possible. In addition, it was determined that the UGS should
be sensitive to seismic signals within the frequency range of
1 to 1000 Hz.

3. Pressurs Sensor

Pressure sensors are most useful in applications where
the pressure transmitting medium is dense or the sensor is
located very near the pressure source. It was determined that
neither of these situations would apply for our specific
application. As a result, no pressure sensor is included in
the UGS design at this time.

4. Magnetic Sensor

The maénetic sensor can detect disturbances in the
local magnetic field. These disturbances could be caused by
the passing of an iron based metal object or a current
carrying conductor in the proximity of the sensor. A tank,
for éxamp]e, would have to pass within approximately one tank

length of the magnetic sensor to be detected.[Ref. 7] It is

15

-




anticipated that the UGS will not be close enough to the
object of interest to make use of a magnetic sensor.
Consequently, a magnetic sensor is not included in the current
UGS design.
5. Global Position Sensor (GPS)

GPS, if used, could determine the position of the UGS.
This information could be included in any communication with
the UAV. The position data could then be used by the UAV to
pinpoint the detection location or track a disturbed UGS.
However, for this application it assumed that the UGS’s

position will be known at all times. The use of a GPS sensor

is, therefore, not required.

B. TRANSMISSION REQUIRERMENTS

The UGS must be able to periodically transmit an "I am OK"
signal and aperiodically transmit an "Alarm" signal if the
processed data indicates that a detection has occurred.

1. Message Format

The transmitted message must indicate the identity of
the UGS and whether an alarm condition exists. 1In addition,

it should encode the data to provide some error detection and

correction capability.

There are two different categories of information

coding:

e Convolutional codes continuously encode long bit streams.
This method is best suited for continuous transmissions.

16




e Block codes group the data into blocks and encode these
blocks as a unit. ‘
This system will only be transmitting blocks of data;
therefore, convolutional coding is not necessary. Use of
block coding is appropriate here.[Ref. 8]

Several error detection/correction methods use block
coding. One such method adds a single parity bit to the data
block. This method will detect a single error, but will not
provide any‘error correction capability. Hamming Code is
another method, which uses 2"-1 bits to describe 2"-1-N data
bits. It can be used to detect and correct only single bit
errors: single error detection, single error correction
(SEDSEC). Adding another bit to the Hamming scheme above to
indicate overall parity will allow for the detection of two
bit errors. This scheme is called double error detection,
single error correction (DEDSEC). It requires 2" bits to
encode the message and provides for 2"-1-N data bits.

2. Transmitter Interface

The transmitter must be able to communicate with the
digital signal processor (DSP) board. This can be done via an
RS-232 serial communication port. Some DSP boards provide
these ports, while others do not. The UAV project currently
being developed at the Naval Postgraduate School, Monterey, CA
is using an intelligent RS-232 controller with an available

channel for communication with the UGS.

17




Another method of communication between the processor
and radio is to use the available output ports of the DSP
board. The types of output on the available DSP boards vary.
Most of the DSPIboards surveyed provide an analog cutput,
However, one board investigated also provides a software
controlled serial output. Either the TTL compatible output or
the analog output could be used to cummunicate with a radio.

3. Transmitter Requirements

Besides satisfying the interface requirements, the
transmitter should have low energy consumption, be battery
powered, small, liéht weight, and secure. It also must b=z
able to transmit to the UAV at a slant distance up to 30 Km.
A link budget was calculated to determine the transmitter
power required for this data link. Below is a list of the

assumptions made in calculating the link budget:

1. Transmit from ground to air.

2. Maximum slant range: R = 30 Km.

3. Transmission antenna: Monopole with 2.3 dB peak gain.

4. Pointing loss fbr transmissién antenna: 5 dB

5. Transmit frequency: 9790 MHz (spread spectrum)

6. Regeive antenna: Double skirted ground plane with 6 4B
gain.

7. Pointing loss of receiving antenna: 1.0 4B

8. Moderate weather conditions.

18




As can be seen in Table I below the link budget calculations
indicate the transmitter must be able to radiate 1.55 watts of

power for adequate communication.

Table I UGS/UAV LINK BUDGET

L T T R —

Transmit Tx Plus Minus

Tx Antenna Gain (peak) 2.3 dB

Tx pointing loss 5.0 dB

Propagation

Free Space loss(A/47R)? 121.2 dB

Atmospheric absorptiomn 0.0 dB
0.0 @B

Precip absorption

Receive Rx |

Rx Antenna gain 6 dB

Rx Pointing 1.0 @B j
Noise Power |
Rx Noise (sensitivity=1 pv) -107.0 dBm |
Totals 8.3 dBm 20.2 dBm 1

|
Difference = -11.9 dbm i
|

For a +20 dB signal margin, TX power Pt must be
31.9 dBm or 1.55 watts.




C. DIGITAL SIGNAL PROCESSOR (DSP) REQUIREMENTS

There are many DSP boards being marketed. These boards
vary in speed, cost, I/0 capabilities, signal processing
capabilities, size, energy consumption, developmental support,
and technical support. The discussion below describus each of
these variables and their importance to this design.

1. Speed |

There are two aspects of speed to consider for this
design. The first is processor speed. The processor must be
able to analyze the sampled data in a timely manner. This is
necessary to facilitate the transmission of an alarm signal
within a few seconds of a detection. Also, the faster the
processor, the more complicated an analysis can be cnrried.
out.

The second aspect of DSP board speed is the rate at
which a signal can be sampled. The board must be capable of
sampling the input ports at or above the Nyquist rate, a rate
equal to or greater than twice the highest freguency present
in the signal applied to the ports.

2. Cost . e

The DSP board is the most expensive component of this
design. The cost will be kept low by using COTS DSP boards.

In addition, the cost can be kept low by purchasing only what

is needed to fulfill the design requirements. Some allowance




can be made for expanded capabilities if the cost remains
reasonable.
3. IXI/0 Capabilities
The DSP board must be able to accept at least two
analog input signals and have one output signal to communicate
with a transmitter. The output data can be transferred via an
analog port, a serial port, or a parallel port.
4. 8Signal Processing Capabilities
Digital signal processing is heavily based on
arithmetic operations. The DSP bcard should use a
microprocessor that easily executes arithmeti: instructions
suéh as multiplication, division, and shift operations.
The processor should also be able to perform bit

reversal to aid in the calculation of Fast Fourier Transforms

(FFT's). In addition it should have onboard memory for

storing raw and processed data.

5. 8ize

The UGS is to £fit in a volume approximately the size
of a soda can. Consequently, the DSP board must be as small
as possible. Most DSP boards investigated required less than
25 in’. |

6. Energy Consumption

The DSP board is the single largest load of all UGS

components. To keep the total energy consumption low, the

power required by the DSP board must be kept to a minimum.




This can be achieved by choosing a DSP boafd that makss use of
low power CMOS technology. Additionally} some processors also
have a sleep mode permitting them to consefve energy.
7. Developmental Support |

One of the biggest considerations in choosing a DSP
board is the developmental support.that is provided. The DSP
system purchased should provide for " the development,
debugging, and testing of user written codé; This is vital in
the early stages of product development. However, it is not

as important once the user hes a satisfactofy‘algorithm tested
and loaded on the DSP board.
8. Technical Support

Most current DSP systems are relatively new, this
means the accompanying documentation may be incomplete or in
error. It should be established that the technical support
department of the DSP board manufacturer is cooperative and

eager to help resolve any inaccuracies in the documentation or

technical problems.

D. POWER SUPPLY REQUIREMENTS

The UGsr is to operate in a stand-alohe mbde. This
requires that the DSP board, microphone, and transmitter are
powered by batteries. The size limitation of the entire unit
dictates that the battery cannot be too large. This unit,
however, must continue to operate for prolonged periods of

time. Both requirements put severe limitations on the energy

22




consumption of the DSP board since it is the largest load on
the power supply.

Most currently available DSP boards operate at five volts
and require 2-3 watts of power. For a three watt device this
means there is less than 11 hours of operational life for a 12
volt, 6.5 Aamp-hr lead acid battery regulated to five volts.

To increase the operational lifetime of the system, the
following alternatives should be investigated:

« Reduce system loading by replacing the DSP board with a
low power version.
e Use efficient, high capacity batteries.

e Supplement the battery with solar power.‘

This proof-of-concept design will not explore these
alternatives. Instead, this system will be developed using
both non-rechargeable batteries and sealed, lead-acid
batteries. It is anticipated that a production system would
use CMOS ASIC technology, reducing power consumption by a

factor of 1000.

E. SUMMARY

The design requirements will be met if the UGS is a stand-
alone unit that uses acoustic and seismic sensors to detect
and evaluate objects of interest. The eva;uation will be
performed by a digital signal processing board capable of

receiving at least two input signals. In addition, the DSP

23

\T/'/ ' - g - ) »\




poard must be able to send information packets indicatir- an
malarm" or "I am OK condition to a rransmitter. The
transmitter will be a spread spectrum UHF system that receives

these packets of information and relays them to Ehé UAV. All

power for the UGS will be provided by batteries.




V. UNATTENDED GROUND SENSOR HARDWARE

Previous chapters provide a brief backgrouné of the UGS
project and its design considerations. This chapter describes
the components that are considered for incbrporation in this
project. It will also describe, in detail, the components
that are included in the final product and the reasons for

choosing them. Figure 1 shows a block diagram of the UGS

system as implemented.

ADSP- 2105 Seismic Sensor
- 16 Bit ADC
- Ag g:litzDAcrt Acoustic Sensor
- -‘ po - ,
- 2 serial bit )fO pins >0~ 16,000 Hz
- 2 analog line inputs
- 2 analog line outputs
- microphone jack input UHF Data Radio
|
Battery

Figure 1 Unattended ground Sensor

25




A. DIGITAL SIGNAL PROCESSOR BOARD

The DSP board is the most important component of thé UGS
system. As such, the proper selectior: of a DSP board was
paramount to the success of this design. Some design
requirements of Chapter III were given =ore weight than
‘others. The principal factors considered in this design were
signal processing and I/0 capabilities.' Since this project
was unfunded, the cost was another important factor. The next
level of priority was assigned to the amount of developmental
and technical support provided by the manufacturers. Finally,
the lowest priority de#ign considerations were processor speed
and energy consumptioﬁ. It was felt that, since this was a
proof-of-concept devicé, faster and more energy conservative
alternatives could be %xplored later.

Three DSP systems yere considered for use in the UGS. A
table summarizing thesé systems and their attributes can be

‘found in Appendix A. The first of these was the Piranha 3111.
This DSP board is baged on a Texas Instruments TMS320C31
processor made by DSP Aesearch and costs approximately $1500.
The Piranha 3111 runs at 40 MHz, consumes about two watts of
power, and communicates with a motherboard via a full duplex
serial interface. The Piranha Evaluation Board (PEB) is a
developmental board that c&n hold one or two Piranha modules.
By using the PEB the Piranha modules can communicate

individually with a host PC. They can also communicate with

each other in a stand-alone mode by supplying the PEB with

26

re



+5/12 volts. The main drawback of the Piranha 3111 is that it
has only one analog I/Ovchannel. The Piranha was not chosen
for development because of its limited technical support and
limited I/O capabilities.

The second DSP board considered was the SBC- sl
manufactured by Innovative 1Integration of Moorpark,
California. The SBC-31 is a stand-alone processor also based
on the Texas Instruments TMS320C31, 32-bit floating-point DSP.
The board is very versatile with regard to I/O capabilities.
The SBC-31 supﬁorts two'fully duplexed RS-232C serial channels
and a 48-bit digital I/0 port. The fully configured SBC-31
supports analog inputs and outputs. The analog input channels
are sampled at 200 kHz and have 16 bit resolution. They can
be configured for 16 single-ended inputs, or eight
differential inputs; or four differéntial and eight single
ended inputs. The SBC-31 has four 16-bit, 200 kHz analog
output channels. When running at 50 MHz, it is capable of 25
MIPS sustained performance.[Ref. 9] This board was delivered
with its development package for §$2500.00 and very good
technical documentation. The cost of the SBC-31 without the
development package is $1195.00. The biggest drawback for
this board is its power consumption. The fully configured
SBC-31 consumes about three watts of power. This high power
consumption is due, in large part, to its high signal sampling
rate and A/D conversions. The SBC-31 may be too capable for

this project. A slower, less capable board might consume less

27

o




power and still meet the basic design requirements. Howevef,
further investigation of an UGS system based on the SBC—31
éould prove fruitful. Development of a secénd UGS system
based on the SBC-31 is currently planned by NPS.

The third ahd final DSP board considered was the EMB-1601A
manufactured by Wavétron Microsystems of Redwood:  City,
California. The EME—lGOlA, a block diagram of which is shown
in Figure 2, is a digital signal processing board based on
Analog Devicés' ADSP2105 chip. This DSP board has two 16-bit
analog line inputs with RCA cornectors, one microphone input,
and two 16-bit analog line outputs with RCA connectors. It
can sample the inputs at user determined frequencies that
range from S5.5125 kHz to 48.00 kHz. Additionally, the EMB-
1601A can be configured with a ten Mb/s synchronous serial
port and/or a 9600 bps, RS-232, serial port.[Ref. 10] The
RS~232 port with an optional development package permits
communication with a PC. This combination allows the user to
develop code on a PC and then download that code onto the EMB-
1601A for testing. Besides the I/0 ports mentioned above, the
EMB-1601A has two parallel I/0 pins that can be used for
signaling or processor control. The EMB-1601A has a 10MHz

crystal that allows it to execute instructions at a rate of




¥od pues
SNOvOIYIuLs Yy

29

: © sossed0sg puis g
‘ SoIL-dsavy

FPigure 2 Block Diagram of
EMB-16012 from [Ref. 10]




10 MIPS.[Ref. 11] It can operate in a stand-alone mode with

a power consumption of about two watts.

This unit was shipped to NPS with the following options:

e BK X 24 zero wait state SRAM.

e RS-232 based development software and C command library.

e DSP Assembler, Linker, and Simulator.

The total cost of this package was $1780.00. Some of the cost
was due to the onetime purchase of the development packages.
The cost of just the DSP board with SRAM was only $590.00.
There were several errors decected in the technical
doéumentation provided by Wavetron Microsystems and Analog
Devices. However, representatives from both companiés were
very helpful and all noted discrepancies were quickly resolved
either by phone coﬁversation or electronic mail. The EMB-
1601A meets all of the design requirements and i§ suiﬁable for

use in this UGS system. The board layout for the EMB-1601A is

shown in Figure 3.

B. SENSING DEVICES

There were two environmental properties considered best
suited for exploitation in this UGS. This project will make
use of airborne sound and low frequéncy ground \vibrations by
sensing acoustic and seismic information. A microphone will

be used to sense the acoustic information. |The specific

30




64 or32 kbyte
oot FFROM
10Mb/sport | | ADSP-2105 8 kword ART RS-232
\’ v opuonal port
memory ‘J
-
AD-1849 4
T Reset D184 ® +5 volts
Switch o-— GNP
Micropora _ @4—PI00
mput Let  Right Left Right ¢1. pio1
chanin chanin chanout clunoui.*\sz
l‘

. Pigure 3 EMB-1601A Board Layout

@icrophone that was chosen is a Pressure Zone Microphone PZM-
iBO made by Crown of Elkhart, Indiana. This microphone has a
hemispherical polar pattern that allows it to pick up sounds
éround it at sound pressure levels as high as 120 dB. The
éZM-ISO has a frequency response from 50 Hz to 18,000 Hz, with
%n open-circuit sensitivity of 3.2 mV/Pa. This microphone
éosts $190.00, and its characteristics make it ideal for the
UGS project. |

The seismic information will be sensed by an Oyo Geospace
HS-J-K3A geophone. This sensor was chosen for its small size
and weight (0.6 in’ volume and 1.8 oz. weight). Two of these

sensors along with their calibration data and mounting devices

were donated to this project by the Naval Surface Weapons

31




Center, Silver Springs, Maryland. Figure 4 shows the geophone

as wired for connection to the DSP board.

. Connector

Figure 4 HS-J-K3A Geophone with RCA Connector.

C. TRANSMITTER
Since the RS-232 port of the DSP board was needed for

development of this system, it was decided to use the two
'parallel I/0 (PIO) pins of the DSP board to send signals to
the transmitter. The PIO pins are TTL compatible and software
controlled. The software for this project was developed based
on the assumption that the transmitter chosen would take one
TTL input to enable transmission and another TTL input that
would carry the actual signal. Such a transmitter has not yet

been identified. However, an interim solution has been found

32

e

’I
"
-




for testing purposes only and.can be used until a transmitter
with the desired properties is identified ur built.

A Lack of funding has prevented purchasing a
transmitter/receiver pair. Nonetheless, the device identified
as the temporary solutior for use in this project is a 27.145
MHz, phase modulated, four wétt, battery powered transmitter.
It is made by Linear of Cérlsbad, California and comes in
three different models (MR161T, MR164T and MR168T). The
mccdels are differentiated based on the number of inputs they
can take. For example, model MR164T can encode angd transﬁit
a unique message to the receiver for each of its four .inputs.
Model'MmlsaT can do the same for its eight inputs. The
transmitter senses the continuity of its input lihes.
Transmission will occur if a normally open contact is shut or
a normally shut contact is o) ened. With simple modifications
'of the software, the PIO pins on the DSP board could be used
to trigger relays that would be used as the inputs to the
transmitter. One input could be used to indicate "I AM OK"
while another input would indicate an "ALARM" condition.

This transmitter radiates four watts of power, which.is
more than the required 1.55 watts determined in Appendix B.
It draws less than 20 microamperes in standby and 0.8 amperes
durirg its 4-5 second transmission time. The Linear
transmitters can be powered from an external 12-13.5 VDC power

supply or nine AAA alkaline batteries. A four-channel

33




transmitter costs about $240.00 and an eight-channel receiver

costs about $300.00.

This family of transmitters and receivers meet most of the
design requirements; however, there are some reasons why it is
not deéired to use these units in the final producﬁ. First,
the low transmission frequency requires A larger antenna than
that needed for high frequency systems (900 MHz). Second, the
receivers used with these transmitters can only handle a
maximum of eight channels and then only one channel at a time.
Finally, signals are not transmitted using spread spectrum
methods making it easy to locate the transmitters using Radio

Direction Finding (RDF) techniques.

D. POWER SUPPLY
The power supply for this device is a 12 volt, 6.5 Amp-hr,

gel-cell, lead-acid battery made by Power Sonic of Redwood
City, California. The +12 volt supply is regulaﬁed to +5.0
volts for the DSP board. The microphone is supplied by a
separate phantom battery source. The transmiﬁter is supplied
by either the system 12 volt battery or its own internal AAA
batteries. Figure‘S below illustrates thérc1fcuitrdiégram

for the +5.0 volt DSP board power supply.

34

e T T . \ ‘ . ]
e T - P N s
N - o A
;

RV



- .
[ ]
«

*——-llmlw-[;[(

0.4———:—->+0

Figure 5 +5 volt DSP Power Supply

E. SUMMARY
After investigating the alternatives for the four hardware

categories, the following solutions were chosen for
implementation:.
e Digital Signal Processing Board: Wavetron Microsystems'’
EMB-1601A. .

e+ Sensing Devices: Crown PZM-180 microphone, Oyo Geospace
geophone model HS-J-K3A.

e Transmitter: Linear’s model MR164T four-channel
transmitter.

» Power Supply: BAlkaline batteries and 12 volt gel-cell
lead acid battery. . :

A system with these components less the transmitter was

constructed and tested satisfactorily.

35




V. SOP'I'WARB DESIGN CONSIDERATIONS AND IMPLEMENTATION

The software phase of this design was a multi-step
process. The first steb was to define the problem. Once the
problem was defined, a solution algorithm had to be developed.
The tnird stage was to implement the algorithm in code and
debug it. Finally, the code was modified to operate

independent of the development system and loaded on an EPROM

for board testing. This chapter describes the entire design

process, and the resulting problem solution.

A. PROBLEM bE?INITION
There are several objectives that must be accomplished in
this software deéign. The problem definition is based on
efficiently satisfying all these objectives. Beloﬁ is a list
of the objéctives for this design.
1) The overall software structure should be designed so that

it meets all of the objectives and is easily expanded by
linking in additional C language modules.

2)The code mﬁst be loadable onto a bcot EPROM for stand-

alone operation.

3)The code must cause the DSP board to sample the line or
microphone inputs at a user determined frequency.

4)The code must process the sampled data to determine if an
*"ALARM" condition exists. .

5)The code must be able to perform hardware self-checks to
determine operability.

36




6)The code must cause the DSP board to transmit device-

unique signals that periodically indicate "I AM OK" or

aperiodically indicate that an “"ALARM" condition has
occurred.

B. SOLUTION ALGORITHM

There are several programming strategies or philosophies
that could be used individually or in combination to create a
program structure that will meet the above objectives. One
such programming strategy is called the Flow Dfiven method.
This method is used when a program needs to step through a
sequence of instructions with strict control interrupts and
external inputs. This approach is conceptually simple and is
good for lockstep type processes. However, it suffers from a
lack of flexibility. Consequently, this approach is least
suited for real-time applications.

A second approach is called the Clock Driven method. This
method is particularly well suited for maintenance type
algorithms where a controlling program must call subprograms
based on the amount of time expired on some clock. However,
the Clock Driven method may be too constraining if the
subroutine length is subject to variability or if the number
of subroutines is small. |

A third approach to program structuring is called the
Interrupt Driven method. The Interrupt Driven method uses
real-time occurrences to cause the microprocessor to transfer
program control to an'interrupt handling routine. This method

is excellent for real-time applications where immediate action

37




is required for a given event. Additionally, these interrupts
can be nested such that if the processor is servicing one
interrupt and a higher piiority event comes along, the highest
priority event is always serviced immediately at the expense
of the lower priority event. When the higher priority event
servicing is complete, the processor resumes servicing the
lower priority event. One drawback to using this method is
that the microprocessor deéign governs the number and type of
interrupts available. This will 1limit the program’s
flexibility.

Figure 6 shows a structure chart for the programming
aléorithm used in this sdftware design. The flow diagramé for
the individual blocks of this figure can be found in Appendix
B and the associated source . code in Appendix C. As can be
seen, all three program structuring methods were used.

The Interrupt Driven method was wused to handle
transferring information to and from the enCOder DECoder.
(CODEC) peripheral. The Transmit Interrupt (SPORT1 TX) was
used during the hardware initialization phase. When the DSP
board is RESET, an initialization process is begun. This
process sets up the pertinent registers and parameters
necessary for the proper operation of the DSP board. At one
point in the initialization phase, the CODEC is placed in
Control Mode. Four control words are then sent to the CODEC
by the microprocessor. These control words specify various

operating parameters such as sampling rate, data format, and

38




stereo/mono mode. After each control word is sent, a SPORT1
TX interrupt is generated. The SPORT1 TX interrupt handler
carries outvthe handshaking‘routines to ensure the CODEC has
been initialized. The interrupt handler then places the

CODEC in Data Mode and disables the SPORT1 TX interrupt

Interrupt Vector Table

Reset IRQ2 Serial Port XMIT | Serial Port RCV | Timer
Address:0x0000| Address (00004 | Address:0x0010 | Address:0x0014 | Address:0x0018
not used SPORTI TX) (SPORT! RX)

[initiatization SPORT1 TX SPORT1 RX Timer

interrupt interrupt interrupt
2105_hds.dsp handler handler handler
2105_hdr.dsp 2105_hdr.dsp 2105_hdr.dsp

main() found
in clink.c
(contains &
crude detect

_v_. \-

rf)etecﬁon rH—erdwm- 1 rO;e: “:
|

| Atgorithm | | Check | |
Iforﬁ:tme ' I(forﬁmxe :(foxﬁ:mte
dovelopmend j developm J

-———-d L....__ - -

Frigure 6 Program Structure Chart

39




after the CODEC initialization is complete. See Appendix B

for a flow diagram describinglthe SPORT1 TX routine.

Once the CODEC has beéh piaéed in Data Mode, the Receive
Interrupt (SPORT1 RX) is vsed to receive and store the sampled
data. This interrupt is also used to send data béck to the
CODEC. The CODEC sends a four-word packet of daté to the DSP
microprocessor at the sampling‘rate set while in Control Mode.
When the four-word padket is sent to the microprocessor, a
SPORT1 RX interrupt is generated by the CODEC. The.interrupt
handler will do two things. The first thing the SPORT1 RX
interrupt handler does is, establish conditions for external
signaling. The microprocessor can generate external signals
via the CODEC. This is done by properly setting the value of
the fourth word in a four word packet (cntrl_1l) that is sent
to the CODEC in the last part of this interrupt handler. The
value of the cntrl_1 comes from one of the three message
arrays ("NORMAL", "I AM OK", and “ALARM"). The message array
chosen as the source for cntrl.1l is based on the value of the
global variable SIGNAL_FLAG. The variable cntrl_1l is assigned
the value of a message array'element. After a certain number
(txn_divisor) of SPORT1 RX interrupts has occurred, cntrl_1l
will be assigned the next value in message array. When the
end of the array is reached SIGNAL_FLAG will be checked again
to determine the aprropriate message array. Each entry in a
message array determines the voltage level of the two parallel

input/output pins (PIOl1l, PIOO) on the DSP board. A more

40




detailed explanation of this prbcess can be found in the next
section.

The second thing the receive interrupt handler does is
read the data from the CODEC inputs. The same data is then
immediately written back to the CODEC for output with one
exception. It is at this point that a possibly modified
cntrl_lvis sent to the CODEC to set ﬁhe value of the PIO pins.
See Appendix B for a flow diagram describing the SPORT1 RX
interrupt handler.

The Clock Driven method has been used to periodically set
the SIGNAL_FLAG variable to a value indicating an "I AM OK"
condition. A timer onboard the microprocessor can be setup to
generate an interrupt with a period of up to 1.67 seconds.
However, the frequency of this interrupt must be reduced ..
hardware self-checks are to be conducted hourly. This was
done by introducing a scaling constant called one_hour. When
the one_hour variable is set to 2160, significant action will
only be taken on every 2160 Timer interrupt. This means the
interrupt handler will take meaningful action about once an
hour. The méaningful action for this interrupt is to set the
SIGNAL_FLAG variable to a value indicating an "I AM OK"
condition. SIGNAL_FLAG will only be set to "I AM OK" if there
is no preexisting "ALARM" condition. A flow diagram for the
Timer interrupt handler can be found in Appendix B. Future
versions of this program could call a hardware checking

subroutine from this interrupt and use the results of the

41

4




check to set the SIGNAL_FLAG variable to the appropriate
value. | ' |

The Flow Driven method has been used to initialize the DSP
board hardware, initialize the program variables, énd_call the
Main.c program. The initialization is accomplished every time
the EMB-1601A is powered up or reset. The Flow Driven method
was chosen for the initialization process because the steps of
this process must be completed sequentially with strict
control of all interrupts. Once ail of the initialization has
been completed, the Main.c program can be called. Main.c and
its subroutines are also flqw driven, but they must be
interruptable to allow the sampling and signaling interrupt
routines to operate. A flow diagram for the initialization

process can be found in Appendix B.

C. ALGORITHM ENCODING AND DEBUGGING

The development tools provided by Analog Devices include:

e C Compiler and C Preprocessor.

ADSP-2100 Family C Runtime Library (flocating-point math
functions, Digital Signal Processing functions, standard

C operations).

C Source Level Debugging Utility.

ADSP-2100 Family simulator.

PROM Splitter

These software tools include a system builder. The System

Builder creates an architecture file (*.ach) from a user

42




written system file (*.sys) that describes the target system
being programmed. This architecture file is used.by the
compiler to help determine where variables and code can be
placed. The system file for the EMB-1601A is called 2105.sys
and can be found in Appendix C. In addition to the system
builder, the software tools use an assembler, linker and a
PROM splitter. The PROM splitter cenverts the executable code
into a format that can be loaded onto a PROM.
The Wavetron Microsystems’ development package includes:
e A boot PROM with the UART driver and user-code download
routine on it. ‘

e Object code and source 1listing for a Fast Fourier
Transform routine.

e C++ functions and a library for initializing and
controlling the EMB-1601A from a C++ program.

e An Assembler, Linker, and System builder.

The Wavetron development tools were used exclusively in the
early phases of the programming process. The first step in
developing the software portion of this system was to create
a systém file. Once this was done, the next step was to
assemble, link, and download an example program provided by
Wavetron. The example program consisted of a batch program
(*.BAT), several Analog Devices’ assembly language modules
(*.DSP), and a C++ program (*.cpp). The batch file assembles,
links, and converts the object code to a format that can be

downloaded from the PC to the DSP board. The C++ program is

43




——
drollln X

P

used to initialize the DSP board, establish a graphical
interface, and download the user-code onto the DSP board.
Once the C++ program downlcads thé DSP code onto the DSP
board, it receives data from the DSP board which is used to
display the frequency spectrum of the input signals on the PC.
The assembly language modules setup the interrupt tableé,
perform an FFT on two incoming line signals and make the data

available to the PC for graphing on the PC monitor. Structure

‘:harts for these programs are shown Figure 7. The ability to

graphically display the spectrum of sampled data made these

routines ideal for monitoring the response of the seismic and -

acoustic sensors. All of the source files for this example

program can be found on the development software disk provided
by Wavetron Microsystems.

After the example program was running successfully, the
next step was to modify the program so that the voltage levels
at the PIO pins could be changed. As explained in the
previous section, this is accomplished by modifying the value
of the data words that are being'sent to the CODEC. By
changing the value of the PIO bits in cntrl_1, the level of
the PIO pins can be changed. Figure 8 shows the format of the
four-word, 48-bit data stream that is sent to and received
from the CODEC. It should be noted that cntrl_1 and cntrl_ 2
are subsets of the data stream and are treated as variables in
the programs. The variable cntrl_l was modified in the

receive interrupt (SPORT1 RX). This modification was scaled

44




to occur periodically after a set number of interrupts had
occurred. The scaling was done by setting the variable
txn_divisor to some desired value. A value of 5000 for
txn_divisor causes a new value to be sent to the PIO‘pins at
a rate of once every two seconds. This slowed rate permits
visual monitoring of the changing PIO pin values by means of
an LED display.

Once the mechanism for changing the PIO pin values was
proven to work, the next step was to change the PIO levels
using the Timer interrupt. The timer’s initiai cou?t, scaling
value, and reload values are set by writing the appropriate
vaiues to the memory mapped Timer Registers. By writing to
these registers, the timer can be setup to generate;a periodic

interrupt as described above.

The program was then modified to transmit twofdifferent
signals to the PIO pins. The first signal indicateé an "I AM

. . 1
OK" condition as generated by the Timer interrupt routine.

The second signal indicates an "ALARM" condition. gThe alarm
is periodically generated by setting SIGNAL_FLAG to the
'ALARM;'value at the end of a large infinite loop in the main
body of the program. The Receive interrupt (SPORT1 RX)
handler periodically checks the SIGNAL_FLAG variable to
determine the message to be sent. Then the interrupt handler

sets the cntrl_l variable equal to the first value of the

appropriate message array and resets the SIGNAL_FLAG variable

45




Tv-no C++
1 inQ Load user's

\ DSP code

Set data mode Set data mode
functions output finctions

Graph results
User's DSP Code

stit.dsp

(provided)
st_dit. dsp stscram. dsp stwindow.&p
(provided) (provided) (provided) |

+ IR
st_bfp.dsp
(provided)
)

Figure 7 Structure Charts for the Example Program

46




0 15 16 3] 323334 3940 41 42 474849 S50 S1525556 596063
Left-Chantel Audio| Right- Channel Audic|OM[LO |0[SM|RO |PIO|OVR(IS|LG|MA|RG

I I
cntrd 2 entel |

OM Output lines on/mute

LO Left chen. output digital attenuation

SM  Mono Speaker on/mute

RO Right chan. outpul digital attenuation

PIO Perallel 1?70 bits for system signaling

OVR sticky bit indicating ADC overrange

IS  Input selection microphonelline

LG Input gein forleft chan. ,

MA Monitor mix (amount of ADC output mning with DAC input)
RG Input gain for right chan.

Pigure 8 16-Bit Stereo Data Word

to indicate a NORMAL condition. After txn_divisor interrupts
occurred, the cntrl_1l variable is set to the next value in ﬁhe
message array. When the end of the array has been reached,
the SPORT1 RX handler reexamines the value of the.SIGNAL_FLAG
variable and the process begins again. The bit pattern of the
messages can be easily modified to indicate the identity of
different UGSs by changing the message array values in the.
source code. The code can also be easily modified for
operation with the Linear transmitters déscribed in Chapter
Iv. The source code for this step can be found in file
TRANSMIT.DSP listing in Appendix C.

After this algorithm was successfully encoded in Analog
Devices'’ Assembly language and debugged, the next step was to

link a C-language program with it. The C-program was kept

47




simple and was used to set the SIGNAL_FLAG variable to
indicate an alarm condition whenvthe geophone input exceeded
a set threshold. This C-code can be found in the listing for
file CLINK.C in Appendix C. Linking the C-code with the
assembly language cocde proved to be quite difficult and
required considerable technical help from an Analog Devices’
programming consﬁltant.

One of the difficulties in iinking the programs stemmed
from the fact that the ADSP-2100 Family of processors have
five different memory spéces. Eodt memory is one of these
memory spaces. The Boot Memory (BM) is split into eight pages
and each page is one-thousand words long for an ADSP-2105
processor. In addition to BM, there are internal (on chip)
and external Data Memory (ﬁM) spaces. Program Memory (PM) is
also split into internal and external sections. The size and
location of these memory spaces must be specified in the
system file as mentioned earlier. One of the problems was due
to the fact that there was no way to dictate where a compiled
C-program was to be loaded. The G21 compiler provided by
AnalogvDevices automatically placed the C-code at address
0x0000 in internal PM. Since the code on the Wavetron
Microsystems’ PROM also specified that the download routines
must be placed at address 0x0000 of internal PM, there was a

conflict in the memory spaces. This conflict prevented

loading C-linked code onto the DSP board from the PC. It was

‘ ,w
S

——r
— \

“~



determined that there was no solution to get around this
problem.

However, there were still two ways to test the code. The
first method was to run the code on the Analog Devices’ system
simulator. 1T.ae code tested by this method ran as expected.
Nevertheless, the only reliable way to test the code with C
modules linked in is to write the code for stand-alone
processor operation and load the code onto an EPROM. The
EPROM can then be installed on the DSP board and the code

tested. The process for doing this is found in the next

section.

D. MODIFICATIONS FOR STAND-ALONE OPERATION

This section describes the next step in the software
development. After the code was tested either by simulation
or downloading it onto the DSP board by means of the Wavetron
Microsystems’ utility programs, it was loaded onto an EPROM
and tested on the DSP board in a stand-alone mode.

This process required modifications to the assembly
language code. The EPROM would replace the Wavetron
Microsystemé' PROM which had setup the interrupt table
vectors. This meant the stand-alone code must supply its own
interrupt table settings. It also meant that the modified
code had to be placed at address 0x0000 in PM. This would
ensure the interrupt table was in the proper location. With

these modifications made to the previously developed c>de, the

49




new code was then compiled and the executable (*.exe) code
obtained. The PROM Splitter was then invoked to convert the
executable code into a format suitable for booting. The
specific format of this bootable version'is selectable by the ,'i;‘
proper use of switches in the PROM Splittér (SPL21) command /
line. The bootable code was then downloaded onto a 27C512
EPROM for DSP board testihg. Appendix D contains procedures R
that outline all of the steps that must followed in converting | .
a user’'s C-code to a programmed EPROM.

An EPROM was programmed at the endlof each major stage of
the software design prccess to test the code on the DSP board.
The C-linked program was also loaded onto an EPROM and tested
satisfactorily. This successful test prov:d the ability to

link the user's C-code with the‘interrupt handlers. —

E. SUMMARY /l

The process to develop the code for this pfoject involved.
seﬁeral steps. The first step was to successfully load the
example code provided by Wavetron Microsystemé onto the DSP -
board. The next major step was to modify‘this code to prove . AN
that the PIO pins could be manipulated for transmission. The
third step used the Timer interrupt and a large infinite loop
to select the type of signal to be transmitted. The fiﬁal
step was to develop C-cnde that would examine the input data,

check for an alarm condition, and set the SIGNAL_FLAG

accordingly. Each of these steps were tested using a software




simulator. The code was thén verified on the DSP board by
downloading it to the board via the PC or programming a boot
EPROM with the code.

There are only two ways to test cbde written in the C
programming language. The first method is to use the software
simulator provided by analog Nevices. The secord method is to
link the C code with its assembly language header file and
load this file onto a boot EPROM. Once the boot EPROM is
installed on the DSP board, the code begins execution at power

up or when the reset switch is depressed.

51




VI. CONCLUSIONS AND RECOMMENDATIONS

The Unattended Ground Sensor described in this thesis was
‘the best solution that could be provided with the resources
that were available at the time. The UGS in this design uées
a digital signal processing board manufactured by Wavetron
Microsystems to sample acoustic and seismid sensors. The
acoustic sensor is a microphone made by Crown and has a
hemisphericay beam pattern. The seismic sensor is a small,
lightweight éeophone made by Oyo Geospace.

The daté%from these sensors will be processed using DSP
algorithms tﬁat are to be developed. The DSP code developers
will be ablé to initiate an ALARM transmission simply by
setting the élobal variable SIGNAL_FLAG to a number greater
than zero. #he software written for this project will carry

out the detaiﬁs of transmitting the ALARM signal.

|
A lack of funding prevented obtaining a transmitter for .

incorporatioﬁ in this design. However, a transmitter was
identified for temporary use. The transmitter chosen is made
by Linear aud is typically used in burglar alarm systems. The
drawbacks of this transmitter are that it does not transmit in
spread spectrum mode and it transmits at too low of a

frequency. It is recommended that a small, high-frequency,

52




spread spectrum transmitter be developed specifically for use

in this project.

The major problem with the UGS designed for this project

is its high power consumption. The bulk of the power is drawn
by the DSP board itself. This problem was unavoidable in this
design due to the requirement to use commercially available
of-the—shelf.technology. There are some DSP systems currently
being developed that use very low power. One of these systems
is the ﬁnde:wéter Digital Signal Processor (UDSP) made by
Mikrbs Systemé Corporation. The UDSP is based on the Allied
Signals 1750-A microprocessor. It can compute aﬁ up to four

million instructions per second (MIPS) while consuming only

one watt of power. At five milliwatts it can carry out

computations at 10,000 operations per second. It 1is
recommended that 1low power devices 1like this one ‘be
investigated further for use in future UGS designs.

This UGS, as designed, is a good platform for developing
and testing digital signal processing algorithms. Once these
algorithms have been shown to be effective, the UGS portion of

the UAV/UGS combination concept will have been proven.

53

B O




APPENDIX A:

DSP BOARD SUMMARY

Table II DIGITAL SIGNAL PROCESSOR COMPARISON CHART
(== -]

lIIl/IDﬂlL

DSP
Research/Piranha 3111

Innovative
Integration/SBC-31

wWavetron
Microsystems/EMB-1601
(with optiunai memory)

TMS320C31

TMS320C31

ADSP-2105

CosT POWER I/0
1500.00 2 W
1150.00 Iw
§90.00 2 W

54

l-analog 1/0

2-RS-232 chan
16-analog in
4-analog out
48-bit digital 1/0

2-line in
2-line out
l-mic in

2-PIO pins




APPENDIX B: FLOW DIAGRAMS FOR FILE 2105_HDR.DSP

This Appendix contains the flow diagrams for the file
2105_HDR.DSP. This file is broken down into the following

sections:
e Initialization Process
¢ Transmit Interrupt Handler (SPORT1 TX)
e Receive Interrupt Handler (SPORT1 RX)

e Timer Interrupt Handler

55




Initialization Process

2105_hdr.dsp
Variable & Constant _J Initalize DSP's serial T KEY
declarations port (SPORT1) registers Local variable
. O——b
v 1 Global vaniable
Imtialize interrupt vector Inttialize DSP's interrupt Pr q
table register and enable p o:g;n ow
SPORT1 TX interrupt *—
Goto reset address and Send control wordsto | ___,| SPORT1TX
begin execution CODEC and enable mterrupt handler
| SPORT1
l_ _ - “» DMODE_FLG
Call *C" ibrary Clear interrupts
mshalization routine
Initalize variables stored Set conditions for Auto- Enable Timer
tn DM and external PM buffering I/O to CODEC]
A Jr Jp
Initialize ADSP-2105 Sead 1% data word to Enable SPORT1 RX
addressing registers CODEC and Timer mterrupts
Initialize software reg's Tum on SPORT1 Call Mam c program
and place CODECm |-
Control Mode

56




Transmit Interrupt (SPORT1 TX)

oy
FIRST FLG 210S5_hdr.dsp
Yes Set
‘ " FIRST_FLG=0
DCB_FLG
No

e RT1

Did COD
acknowledge DCB\\NO

RT1
Setup SPORT!
data parameters
Disable SPORT1 Instruct CODEC to
go into Data Mode
mode sel=;
date buffers
] B

Set
DCB_FLG=0

SetDCB bitin |, RTI
CTRLOUT=]

KEY

Local vanable
o—

Global variable
Oo—

Program flow
control

57

e At




Receive Interrupt (SPORT1 RX)
2105_hdr.dsp

Disable bit
reversal

See next page

-4« Fromnext page

read mput data read mput data
then write it then write it
10 208 hatf of to 15 half of
output buffer output buffer
L l KEY
Local variable
) o—
Set flip=0 Setflip=1
Global variable
L Pyt J o—
! Program flow
Restore RT1 control
Registers —
58




From previous page

Save additional
registers used

|

reget
flipper=0

Get current

vatue of message
buffer

SPORT1 RX page 2

Reset
o LOOP_CNTR=0
SIGNAL_FLAE Yes SIGNAL FLAGSNo
Get value of ALARM?
SIGNAL_FLAG
. X
et current value et current value
f msg buffer to f msg buffer to
of ALARM top of I AM OK
buffer buffer
et current value
of msg buffer to Reset | [ Reset
top of NORMAL SIGNAL _FLAG | {SIGNAL FLAG
buffes toNORMAL | | to NORMAL

|

write current
value of message
buffer to cntl_1

l

Store address of
next msg buffer
entry

Restore
registers

To Previous page

KEY

Program flow
control

Local vanable
o—

Global vaniable
O—

59




M.\\ /
Timer Interrupt
2105_hdr.dsp
i
Fs;. registers |
Decrement
NUM_SEC
Restore
Registers
RTI
© Set
NUM_SEC= one_hour
Set KEY
SIGNAL_FLAG = Local variable
1AMOK Oo—
Global variable
00—
Program flow
control
60
- . )



APPENDIX C: PROGRAM SOURCE CODE

This appendix contains listings of the following files:

2105.8YsS

FREETEST.BAT

PIO_TEST.CPP

TRANSMIT.DSP

C-LINK.BAT

CLINK.C

2105_HDR.DSP

Description file for the system builder.

DOS batch file that assembles, links,
and PROM splits TRANSMIT.DSP.

C++ file used to initialize the PC for

communication with the DSP board and
send the user code to the DSP board.

Assembly language code that tests the

use of the Timer interrupt to send an "I
AM OK" signal and a large infinite loop

to send an "ALARM" signal.

DOS batch file that assembles, links,
and PROM splits 2015_HDR.DSP and
CLINK.C.

C file that compares sampled data to a
threshold value and sets the SIGNAL_FLAG

to the "ALARM" value if the threshold
exceeded.

is

Assembly language file that initializec

the DSP board, contains the interrupt
handlers, and calls the C program.

61




2105.8YS

{Desci:ption file for the System Builder specifies the
amount of data and program memory in the system. The file
also declares each page of boot memory which will be used.}

.SYSTEM dsps; {system name}

.ADSP2105; . {specifies processor}

.MMAPO; {boot loading enable} e
.SEG/RCM/BOOT=0 BOOT_0[1024]; {boot page zero}

.SEG/ROM/B0O0OT=1 BOOT_1[1024]; {boot page one}

.SEG/ROM/BO0OT=2 BOOT_2[1024];
.SEG/ROM/BO0OT=3 BOOT_3[1024];
.SEG/ROM/BO0T=4 BOOT_4[1024];
.SEG/ROM/BOOT=5 BOOT_5[1024];
.SEG/ROM/BOOT=6 BOOT_6[1024];
.SEG/ROM/BOOT=7 BOOT_71[1024]; {boot page seven}

{internal program memory at absolute address 0x0000, 1024

words long}
.SEG/PM/ram/abs=0/code/data int_pm([1024]:

{external program memory 4096 words long. External program
memory and external data memory together cannot exceed 8192

words} :
.seg/pm/ram/abs=12288/code/data ext_pm[4096]; /
.seg/dm/ram/abs=0x1000/data mode_select;

{external -data memory 4096 words long.)
.seg/dm/ram/abs=8192/data ext_dm([4096];

{internal data memory 512 words long.}
.seg/dm/ram/abs=14336/data int_dm[512];

.endsys;




FREETEST.BAT

DOS batch file that assembles, links, and PROM splits
transmit.dsp. Transmit.dsp tests the software’s ability to
choose and send either an "ALARM" or "I AM OK" signal.
EMB_BOOT.DSP contains the interrupt table setup and routines
for downloading code from the PC. See Reference 10 for a
listing of EMB_BOOT.DSP.

erase emb_send.dat

asm2l transmit.dsp -1

asm2l emb_boot.dsp -1

1d21 emb_boot transmit -a 2105 -1lib -x -g -e 210x
spl2l1 210x emb_boot -i -bm

emb_load amb_send.dat

63




PIO_TEST.CPP

The following file is a C++ file used to initialize the PC
for communication with the DSP board and send the user code

to the DSP board.

/* Embedded board test */

#include
#include
#include
#include
#include
#include

"emb_head.hpp"
<stdio.h>
<conio.h>
<dos.h>
<math.h>
<iostream.h>

void main (void)

{

clrscr();

init_ebl601(1); /* Initialize EMB1601 on COM2 */
load_code("emb_send.dat"); /* Load user‘’'s DSP code */
wait__1(5000); /* Wait ’'til code is running */
cleanup_com() ; /* Reset serial port */

64




TRANSMIT.DSP

The following file contains code that uses the Timer
interrupt to periodically set conditions for sending an "I
. AM OK" signal. It also utilizes an infinite loop in the
main body to establish conditions for sending an "ALARM"
signal.

.MODULE/RAM/ABS=0xXBE/BOOT=0 code_dsp; {module name and load
: location}
.CONST SYS_CTL_REG=0x3FFF; (system control register}
.CONST mode_sel=0x1000; {latched control for Control / Data
{********************l*l*n*e**}*********************************}
{********* Variable Declaration ******t***************}
.VAR/RAM/CIRC CTRLIN[4];{circular buffers for data input
and}
.VAR/RAM/CIRC CTRLOUTI[4]; {output for data mode and
' control mode}
.VAR/RAM/CIRC DATAINI[4];
.VAR/RAM/CIRC DATAOUT_[8];
.var/ram/circ ALARM[16]; ({signal buffers should all be the
same length)
.var/ram/circ IAMOK[16];
.var/ram/circ NORMALI[16];

.var/ram signal_flag, LOOP_CNTR;
.VAR/RAM FIRST FLG; (First time thru flag}
.VAR/RAM DCB_FLG; (DCB software handshaking flag
between 1849 & 2105}
.VAR/RAM DMODE_FLG; {1849 mode flag i.e. CONTROL or
DATA modes}
.VAR/RAM cntrl_1l,cntrl_2, AR_save, AX0_save, flip,
flipper, AY1l_save; »
.VAR/RAM AXOH_save, AYlH_save, NUM_SEC, num_samples,
data_val_;
.CONST one_hour=17; {1:1.67 sec ratio @ 5 kHz sampling,

2160=1 hour}
.CONST txn_divisor=2000; {used to slow rate at which bits
are transmitted, 2000 = 1bit
every 0.4 sec when sampling at

- 5 Khz}
.CONST threshold=0X00FF; {threshold for incoming signal
magnitude}
.CONST min_samples=300; {this is the min number of samples

to ensure}
{valid data is available.}

{ The following statements make these labels visible to
EMB_BOOT.DSP}

.ENTRY code_start;

.ENTRY irq2_intr;

65




.ENTRY irql_intr;

.ENTRY irqgQO_intr; .
.ENTRY timer_intr; -7
.ENTRY sport_txm_intr;

.ENTRY sport_rec_intr;

{======zz======z== INTERRUPT VECTORS =========s=z===ss==s===z===)
code_start: JUMP through; {goto through: at reset}
irg2_intr: RTI; {Sample clock interrupt}
irgl_intr: JUMP SETUPCONTROL; {transmit interrupt}

{Receive interrupt}

irg0_intr: JUMP NEWDATA;
{Internal timer interrupt}

timer_intr: JUMP HOUR;

sport_txm_intr: RTI; {Serial port transmit interrupt}
sport_rec_intr: RTI; {Serial port receive interrupt}
set_control: - {see EMB-1601A users manual for a detailed

description of the control words}
AX1 = 0x212C; {samp freq=44.1 khz,stereo,pcml6, 2104}

DM(CTRLOUT) = AX1; ’

AX1 = 0x2200; {xtal2, 64bits/frame,master,serial txn}
DM(CTRLOUT+1) = AX1; ' |
AX1 = 0OxCOFO0; {(PI0=11, etc) Data mode ,

parameter defaults} |
DM(cntrl_1) = AX1;
AX1 = 0xCO000; {OM, etc}
DM(cntrl_2) = AX1;

RTS;
reset_flipper:
AXO = 0; _ {reset flipper and assign or step

buffer)
DM(flipper) = AXO; ' :
AYl = DM(LOOP_CNTR); ({LOOP_CNTR initialized at reset}
AR = AY1l +1; . I
DM (LOOP_CNTR) = AR; |
AX0 = AR; i
AY1l = %IAMOK; {get length of a message buffer.
_ Could have used the length of any message buffer)}
AR = AX0 - AY1l;
IF LT JUMP FINISH;
AX0 = 0;
DM(LOOP_CNTR) = AX0; {reset LOOP_CNTR}
AX0=DM(signal_£flag); {get value of signal_flag}
AR=PASS AXO0;
IF EQ JUMP NORMAL_XMIT; {are conditions normal?}
IF GT JUMP ALARM_XMIT; (is there an alarm?}
IAMOK_XMIT: IS=~IAMOK; {set up transmitting IAMOK}
L5=%IAMOK;
AX0=0; {return signal_£flag to normal after
transmit conditions set}

66




DM(signal_flag)=aX0;

JUMP FINISH;

NORMAL_XMIT: I5="NORMAL; {establish conditions for)
L5=%NORMAL; {no transmission)
JUMP FINISH;

ALARM_XMIT: I5="ALARM; ({set up for transmitting an})
L5=%ALARM; {alarm} :
AX0=0; {return signal_flag to normal after

transmit conditions set})
DM(signal_flag)=AX0;

FINISH:
AX0 = DM(I5,M7);
DM(cntrl_1) = AXO0;
RTS;

£fill_mssg buffer:

M7=1; {£fill buffers for auto transmit}
{===MSB is the transmit bit (piol). MSB-1 is the data bit
(pio0). ========})

I5=~ALARM; {1id=0x0253, alarm=1sb=1}

L5=0;

DM(I5,M7)=0X00F0; {PO}

DM(I5,M7)=0XCOF0; {C0}

DM(I5,M7)=0X0CFO; {Cl}

DM(I5,M7)=0XCOF0; {D1}

DM(I5,M7)=0X00F0; {C2}

DM(I5,M7)=0XC0.0; {D2}

DM(I5,M7)=0X00F0; {D3}

DM(IS,M7)=0XCOFO; {D4}

DM(I5,M7)=0X00F0; {C3}

DM(IS,M7)=0XCOF0; {D5}

DM(I5,M7)=0X00F0; {D6}

DM(IS5,M7)=0XCOF0; {D7}

DM(IS,M7)=0X00F0; {p8}

DM(I5,M7)=0XCOF0; {D9}

DM(I5,M7)=0X00F0; {D10}

DM(I5,M7)=0XCOF0; {ALARM BIT}

I5=~IAMOK;

L5=0;

DM(I5,M7)=0X40F0; {PO}

DM(I5,M7)=0X80F0; {C0}

DM(IS5,M7)=0X40F0; {C1}

DM(I5,M7)=0X80F0; {D1)

DM(I5,M7)=0X40F0; {Cc2}

DM(I5,M7)=0X80F0; {D2}

DM(IS5,M7)=0X40F0; {D3}

67

[




DM(IS,M7)=0X80F0; {D4} C
DM(I5,M7)=0X40F0; {C3}

DM(IS,M7)=0X80F0; {D5}

DM(I5,M7)=0X40F0; {D6}

DM(I5,M7)=0X80F0; {D7}

DM(I5,M7)=0X40F0; {D8}

DM(IS5,M7)=0X80F0; {D9)}

DM(I5,M7)=0X40F0; {D10}

DM(I5,M7)=0X80F0; {ALARM BIT)}

I5=~NORMAL;

L5=0;

DM(I5,M7)=0X40F0;

DM(IS,M7)=0X40F0; {ensures transmitter is off}

DM(I5,M7)=0X40F0;

DM(I5,M7)=0X40F0;

DM(I5,M7)=0X40F0;

DM(I5,M7)=0X40F0; \
DM(I5,M7)=0X40F0; . ™
DM(15,M7)=0X40F0;

DM(I5,M7)=0X40F0;

DM(I5,M7)=0X40F0;

DM(I5,M7)=0X40F0;

‘DM(IS5,M7)=0X40F0;

DM(1I5,M7)=0X40F0;

DM(IS5,M7)=0X40F0;

DM(I5,M7)=0X40F0; _
DM(I5,M7)=0X40F0;

RTS;

through:
IFC=H#003F; {CLEAR ALL PENDING INTERRUPTS)

IMASK=H#0000;

{*x*xxxnxrx injtialize variables and registers ***rrwrwit)

CALL set_control; {sets values of control words}

AR = %IAMOK-1; {initialize LOOP_CNTR to the length
of a message array - 1} \

DM(LOOP_CNTR) = AR; N

AX0 = txn_divisor; : AN

DM(flipper) = AXO; .

AX0 = 1; ' A

DM(flip) = AXO0;

AX0=0;

DM(num_samples) = AXO0;

DM(data_val_) = AX0Q;

DM(mode_sel) = AXO;

DM(signal_flag) = AXO0;

AX(Q = OxFFFF;

68




DM(0Ox3FFD) = AXO0; {lo«d TPERIOD}
DM(0x3FFC) = AXO0; {load TCOUNT}
AX0 = OxFF;

DM(0Ox3FFB) = AXO0; {1oad TSCALE}

AX0 = one_hour;
DM (NUM_SEC) = AXO;
{====Initialize the transmit buffers========z===========z=====}
CALL fill_mssg buffer;
{====Initilaize the addressing registers of 2105=====z======)
L7=%CTRLIN;
I7=~CTRLIN;
L6=%CTRLOUT;
Ml=1;
M7=1;
I6=~CTRLOUT;
{::::Initialize software flags:::::::::::::::=============}
AX0=1;
DM(FIRST_FLG)=AX0;
DM (DCB_FLG) =AX0;

AX0=0;
DM (DMODE_FLG) =AX0; { in control mode }
AY0=DM (CTRLOUT) ; '
{====Initialize the DSP’'s SPORT1 Serial port registers=====z}
L2 = 0; { linear addressing for register }
I2 = Ox3fef; { point to last DM cntrl reg }
DM(I2,M1) = OxODFF; { 16,M7,17,M7 sportl autobuffer
register }
DM(I2,M1) = 383; { rfsdivl }
DM(I2,M1) = 849; { sclkdivl }
DM(I2,M1) = B#0100000100011111; ({ sportl control

register: internal sclk & rfs, normal framing mode
frame sync not inverted 1l6-bit word length }

{====Initialize the DSP's interrupt registers====ss========}
ICNTL=0x17;
IMASK=B#000100; {only SPORT1 tx interrupt

enabled initially while in control mode }
====EPROM version does not need the next two lines.
Sampling freq is set in set_control. NOTE this is also the
bit rate for transmission===

AX0 = 0X2104; {set sample freq 5.5125 kHz}
DM (CTRLOUT) = AXO0;

{..... Set bit test mask for DCB bit, used in tx interrupt

state machine....}

AY0=DM(CTRLOUT); { test mask for DCB bit }

{..send first control word to switch codec to data mode ...}
AXO=DM(I6,M7); { send first 16bits of ctrl word }
TX1=AX0;

I2=0x3ffe;

69

-




~—
,

DM(I2,M1) = 0x0000; {No wWait states}
DM(I2,M1l) = 0x0cl8;. {system control reg: sportl
enabled }
{..... Wait for an interrupt indicating that transmit
register is ready for new data and that the 2105 has
received a 16bit word..... }
WAIT1: AX1=DM(DMODE_FLG) ; { check dmode flag }
AR=PASS AX1l; ‘
IF GT JUMP GO_DMODE; { if set, in data mode }
JUMP WAIT1; { else, wait for initialization to
be completed from tx interrupt routine }
GO_DMODE: L7=%DATAIN; { init 17, L7 for rx autobuffer }
I7=~"DATAIN;
L6=%DATAOUT_; { init 16, L6 for tx autobuffer }
I16=~"DATAQUT_;
AX0=DM(I6,M7); { send first 16bits of data }
TX1=AX0;
AX0=0X0c18;
DM(0X3FFF)=AX0; { turn on sportl }
IFC=B#000000111111; { clear all pending interrupts } _ _
nop; { cycle for IFC latency } —
ENA TIMER;
IMASK=B#000011; { sportl rx and timer interrupt on }
main_loop:
AX0 = DM(data_val_); N
AR=PASS AX0; .

IF EQ JUMP main_loop;
secnd_loop:

AX0 = DM(flip);

£R=PASS AXO0;

IF EQ JUMP NEXT; {get freshest data}

AXO=DM(DATAQOUT_+1); {check right channel against

) threshold} L
AYl=threshold; .
ARK=AX0-AY1;
I7 LT JUMP secnd_loc
AXD = 1;
DM (SIGNAL_FLAG) = AX0;
JUMP secnd_loop:;

NEXT:
AXO0=DM(DATAQUT_+5) ; {check right channel against

threshold}

AYl=threshold;
AR=AX0-AY1;

IF LT JUMP secnd_loop;
AXO = 1;




£ 2 A

D SOV A R RN AL L

SETUPCONTROL: AXO0=DM(FIRST_FLG);

DM(SIGNAL_FLAG) = AXO0;
JUMP secnd_loop;

=======Interrupt routinesz==z=====z=zz=sz=z======—===z====z===)}

{ Note: AY0 contains a bit mask and must NOT be modified
elsewhere }

{ first time through ? }

AF=PASS AXO0;

IF NE JUMP DECR_FIRST; { if so, wait until next word
transmitted) '

AX0=DM(DCB_FLG) ;

AR=PASS AXO0;

IF EQ JUMP DCBFLG_SET;

AX0=DM(CTRLIN) ;

AR=AX0 XOR AYO0;

{DCB_FLG has not been set yet)}
{check all incoming bits
including DCB bit}
IF EQ JUMP SET_DCB:; {set flag if DCB was 0}

RTI;
DCBFLG_SET: AXO0=DM(CTRLIN);
AR=AX0 AND AYO;
IF NE JUMP SETDMODE;
RTI;
SET_DCB: AX0=0;
DM (DCB_FLG) =AX0;
AY0=0x0400;

{DCB_FLG was set}
{only check for DCB bit}
{if DBC=1 ready for datamode}

AX0=DM (CTRLOUT); {DCB was 0, prepare to send DCB=1,

DFR=0}
AR = AXO0 OR AYO0;
DM (CTRLOUT) =AR;
RTI;

DECR_FIRST: AX0=0;
DM(FIRST_FLG)=AX0;
RTI;

SETDMODE : IMASK=0;

AX0=0X0418;

DM (OX3FFF) =AX0;

I6 = ~DATAOUT_;
L6=0;

1

|

{ if first time, set flag=0 }

{disable sportl}

DM(I6,M7) = 0x0000; (reset output & input data

buffers}

DM(I6,M7) = 0x0000; ({initialize embedded control

bits}

DM(I6,M7) = 0xC000; {out line 1&2 enab,0 out
atten, speaker mute}

DM(I6,M7) = Ox40F0;

71

{PIO, etc}




{To‘set the dlgltal output pin (open-collector)

set PIO1l to the desirable value.}
{PI0=11,0VR=0,18=0,LG6=0,MA=15, RG 0}

DM(I€E,M7) = 0x0000; {reset output & input data
buffers}
DM(I6,M7) = 0x0000; {initialize embedded control
bits}
DM(I6,M7) = 0OxC000; {same as aboveC000}
DM(I6,M7) = 0x40F0;

{PI0=01,0VR=0,1I58=0,1LG=0,MA=15,RG=0}
{To set the dlgltal output pin (open- collector)
set PIOl to the desirable value.}

AX0=0X001F; _
DM(0X3FF2)=aX0; ({ sportl control: external tfs

external sclk & rfs
16 bit words }

AX0=1;

dm (mode_sel) =AX0; | { set D/C high }
DM (DMODE_FLG) =AX0; { set data mode flag
‘ high }
RTI;
NEWDATA:

DIS BIT_REV;

DM(AR_save) = AR;

DM (AX0_save) = AX0;

DM(AY1l_save) = AY1l;

AYl = DM(flipper):

AX0 = txn_divisor; {this number is used as a divisor to
‘ slow transmission rate}

AR = AX0 -~ AY1;

IF EQ CALL reset_flipper; {reset flipper and assign or

incr buffer}

AYl = DM(flipper);

AR = AY1l + 1;
DM(flipper) = AR;

AX0 = DM(flip);

AR = PASS AXO; -

IF NE JUMP second_half;

AX0=DM(DATAIN) ; { get LEFT channel data }
DM (DATAQUT_ ) =AX0; { output LEFT channel data }
AXO=DM(DATAIN+1) ; { get RIGHT channel data }

DM (DATAQUT_+1)=AX0; { output RIGHT channel data }
AX0 = DM{cntrl_2);

DM (DATAOUT_+2)=AX0;

AX0 = DM(cntrl_1);

DM (DATAOUT_+3)=AX0;

AX0 = 1; { Toggle "flip"}

JUMP nd_end;




second_half:

AX0=DM(DATAIN) ; { get LEFT channel data }
DM (DATAQUT_+4)=AX0; { output LEFT channel data }
AX0=DM (DATAIN+1) ; { get RIGHT channel data }

DM (DATAOUT_+5)=aX0; { output RIGHT channel data }
AX0 = DM(cntrl_2); :

DM (DATAQOUT_+6)=AX0;

AX0 = DM(cntrl_1);

DM (DATAOUT_+7) =AX0;

aX0 = 0; { Toggle "£flip"}

nd_end:
DM(flip) = AXO0;
AY1=DM(num_samples); {the following code sets the
' data_val_ flag}
AX0=min_samples; '
AR = AY1-AX0;
IF GT JUMP clean_up;
IF EQ JUMP clean_up_1;
AR = AY1l + 1;
DM (num_samples) = AR;
JUMP clean_up:;
clean_up_1l: AX0O = 1;
DM(data_val_) = aXO0;
clean_up:
AYl DM(AY1_save) ; {restore register}
AX0 DM (AXQ_save) ;
AR = DM(AR_save);
RTI; { return }
HOUR:
: DM (AXOH_save) AXO;
DM(AY1lH_save) = AY]l; {need to store AR}
AY1l = DM(NUM_SEC) ;
AX0 = DM(signal_flag);
AR = PASS AXO;

IF GT JUMP hour_end; {prevents overriding an alarm
condition} ’

AR = PASS AY1l;

IF GT JUMP hour_end; {only send every NUM_SEC
seconds}

AY1l = one_hour;

AX0 = -1;

DM(signal_flag) = AX0; {set flag to indicate IAMOK}
hour_end:

AR = AY1l - 1:

DM (NUM_SEC) = AR;

AX0 = DM(AXOH_save);

AY1l = DM(AY1lH_save); {need to restore AR}
RTI;
. ENDMOD;

73




C-LINK.BAT

This file is a DOS batch file that assembles, links, and
PROM splits twc input files. One of these files (clink.c)
is a C-language file that uses an infinite loop to
continuously monitor sampled input to determine if an ALARM
condition exists. If an ALARM condition does exist it sets
SIGNAL_FLAG to the appropriate value. The other file

{2105 _hdr.dsp) is an assembly lahguage file that contains
the interrupt table, interrupt handlers, and signal array
initializations. The header file (2105_hdr.dsp) is required
for a C-program to operate. A detailed description of this
batch file can be found in Appendix D.

asm2l1 2105_hdr.dsp -1 -¢c -s

asm2l -1 -c -s -cp -DDMSTACK -DIMAGE=FAM -DANY=RAM
frame_lg.dsp

g2l clink.c frame_lg.obj -a 2105.ach -mreserved=i2,i3 -v
-runhdr 2105_hdr.obj -g -save-temps -Wall -o cexample
spl21 cexample cprom -i -loader ~bs 1024 -bb 2048

74




CLINK.C

This file is a C-language program that uses an infinite loop
to continuously monitor sampled input to determine if an
ALARM condition exists. If an ALARM condition does exist it
sets SIGNAL_FLAG to the appropriate value.

extern int SIGNAL_FLAG;
extern int data_val;
extern int DATAQUTI(]:;

void
main()
{ ,
int rightl,right2,check_data, sat;
sat=1;
loopl: ,
check_data=data_val; /*do nothing until the data is
valig*/
if (!check_data) goto loopl; /*"goto" used because
optimizer prevents using do-while loop*/
loop2: ‘
rightl1l=DATAOUT[1];
right2=DATAOUT[S5];
if (right1>255 || right2>255) SIGNAL_FLAG=1l;/* threshold
is 255*/
goto loop2;

75

AR




2105_HDR.DSP

This file is a modified version of transmit.dsp. It ‘is
loaded at absolute address 0x0000 and is responsible for
establishing the interrupt table. In addition, for this- N\
program to link with a C-program, the only registers that )
could be changed permanently are I2 and I3. For this reason
the autobuffering registers had to be changed to I2 and I3.

.MODULE/RAM/ABS 0x0000 ADSP2105 Runtlme _Header; {NOTE: this
must be abs0000}

.CONST SYS_CTL_REG=0x3FFF; (system control register} |
.CONST mode_sel=0x1000; {latched control for Contrecl / Data ;

line }
{****************'k*****************************************} J

.VAR/RAM/CIRC CTRLIN[4]; {circular buffers for data input

and} _ »
.VAR/RAM/CIRC CTRLOUT([4]; {output for data mode and control
mode)}

.VAR/RAM/CIRC DATAIN[4]; )
.VAR/RAM/CIRC DATAOUT_[8]; f

.var/ram ALARM[16]; {signal buffers should be 16 long
for DEDSEC} b
.var/ram IAMOK[16]; ({all buffers must be the same -
length} ‘
.var/ram NORMAL[16];
.var/ram SIGNAL_FLAG_, LOOP_CNTR;
.VAR/RAM FIRST_FLG; {First time thru flag}
.VAR/RAM DCB_FLG; {DCB software handshaking flag

. between 1849 & 2105}
.VAR/F ™ DMODE_FLG; {1849 mode flag 1 e. CONTROL or

DATA modes}
cntrl_1l,cntrl_2, AR_save, AX0_save, flip,

LVAR/E 4
flipper, AY1l_save;
.VAR/RAM AXOH_save, AY1lH_save, ARH_save, NUM_SEC, .
I0_save, buff_addr; . ;
.VAR/RAM L0_save, num_samples, data_val_; . |
i &

{1:1.67 sec ratio @ 5 kHz sampling,
2160=1 hour)}
.CONST txn divisor=4£000; {used to slow transmission rate, 1
is minimum)}
.CONST min_samples=300; {this is the min num of samples to
ensure that the available data is

valid.}

.CONST one_hour=17;

S .

.ENTRY —1ib prog_term;

.EXTERNAL lib_setup_everythin-:
.EXTERNAL main_;




.global SIGNAL_FLAG_;

.global DATAOUT_;

.global data_val_;

{=z====z======= INTERRUPT VECTORS =z====z=======szoz=s=======x)}

code_start: JUMP through:nop;nop;nop;

irg2_intr: RTI;nop:nop;nop; {Sample clock interrupt}

sport_txm_intr: RTI;ncp;nop;nop; {Serial port transmit
interrupt)}

sport_rec_intr: RTI;nop;nop;nop; {Serial port receive
interrupt}

irgl_intr: JUMP SETUPCONTROL;nop;nop;nop;

irg0_intr: JUMP NEWDATA;nop;nop;nop; {Receive interrupt }

timer_intr: JUMP HOUR;nop;nop;nop; {Internal timer
interrupt} ’

set_control:
AX1 = 0x2104; ({samp freqg=5.125 khz,stereo,pcml6, 2104}

DM(CTRLOUT) = AX1;

AX1 = 0x2200; {xtal2,64bits/frame,master,serial txn}
DM(CTRLOUT+1) = AX1; ‘
AX1l = 0xCOFO0; {(PIO=11, etc) Data mode parameter

' defaults} ,

DM(cntrl_1l) = AX1;

AX1 = 0xC000; {OM, etc}
DM(cntrl_2) = AX1;

RTS;

reset_£flipper:
DM(I0_save)=I0;
DM (LO_save)=L0;
AXO0 = 0; {reset flipper and assign or step buffer)
DM(flipper) = AXO;
AY1l = DM{LOOP_CNTR);

AR = AY1l +1;

DM (LOOP_CNTR) = AR;

AX0 = AR;

AYl = $IAMOK; {could have used any msg buffer}

AR = AX0 - AY1;

IF LT JUMP FINISH1;
AX0 = 0;
DM (LOOP_CNTR) = AXO;
AX0=DM(SIGNAL_FLAG_);
AR=PASS AXO;
IF EQ JUMP NORMAL_XMIT;
IF GT JUMP ALARM_XMIT;

IAMOK_XMIT: IO="IAMOK;

L0=0;
AX0=0; {return to normal after transmit}
DM (SIGNAL_FLAG_)=AX0;

77




JUMP FINISHZ2;

NORMAL_XMIT: I0="NORMAL;
L0=0;
JUMP FINISH2;

ALARM_XMIT: I0="~ALARM;
LO0=0;
AX0=0; {return to normal after transmit}
DM (SIGNAL_FLAG_)=AX0;
JUMP FINISH2;

FINISH1l: I0 = DM(buff_addr);
FINISHZ2: AX0O = DM(IO,M1);
DM({cntrl_1) = AXO;
DM(buff_addr) = I0;
I0 = DM(IO_save);
L0 = DM(LO_save);
RTS; :

fili_mssg_buffer: {£fill buffers for auto transmit}
===MSB is the transmit bit (piol). MSB-1 is the data bit

(pio0). ========}
I0="ALARM; {id=0x0253, alarm=l1lsb=1}
'L0=0;

'DM(10,M1)=0X00F0; (PO}
'DM(I0,M1)=0xCOFO0; {C0}
'DM(I0,M1)=0xCOF0; {C1}
'DM(I0,M1)=0xCOF0; {D1}
,DM(I0,M1)=0x00F0; {C2}
'DM(I0,M1)=0xCOFO0; {D2}
‘DM(I0,M1)=0x00F0; {D3}
.DM(I0,M1)=0xCOFO0; {D4}
'DM(I0,M1)=0x00F0; {C3}
‘DM(I0,M1)=0xCOFO0; {D5}
DM(IO0,M1)=0x00F0; {D6}
DM(I0,M1)=0xCOFO0; {D7}
DM(I0,M1)=0x00FO0; {D8}
DM(I0,M1)=0xCOF0; {D9)}
DM(I0,M1)=0x00F0; {D10}
DM(I0,M1)=0xCOF0; {ALARM BIT}
I0=~IAMOK;
L0=0;
DM(I0,M1)=0X40F0; {P0O)}
DM(IO0,M1)=0x80F0; {C0}
DM(IO,M1)=0x40F0; {C1}
DM(IO0,M1)=0x80F0; (D1}
DM(IO,M1)=0x40F0; {C2}
DM(IO,M1)=0x80F0; {D2}
78
™~ // B o -




DM(I0,M1)=0x40F0; {D3}

DM(I0,M1)=0x80F0; {D4}

- DM(I0,M1)=0x40F0; {C3}
DM(10,M1)=0x80F0; {D5}
DM(IO0,M1)=0x40F0; {D6}
DM(IO,M1)=0x80F0; {D7)}
DM(IO,M1)=0x40F0; {D8}
DM(IO,M1)=0x80F0; {D9}
DM(IO0O,M1)=0x40F0; {D10}
DM(IO0O,M1)=0x80F0; {ALARM BIT}
I0="NORMAL;

L0=0;
DM(I0,M1)=0x40F0; {ensures transmitter is off}

DM(IO,M1)=0x40F0;
DM(I0,M1)=0x40F0;
DM(IO,M1)=0x40F0;
DM(IO,M1)=0x40F0;
DM(I0,M1)=0x40F0;
DM(I0,M1)=0x40F0;
DM(IO0O,M1)=0x40F0;
DM(IO,M1)=0x40F0;
DM(IO0,M1)=0x40F0;

"DM(IO0,M1)=0x40F0;
DM(I0,M1)=0x40F0;
DM(I0,M1)=0x40F0;
DM(IO,M1)=0x40F0;
DM(I0,M1)=0x40F0;
DM(IO,M1)=0x40F0;
RTS;

through:

CALL ___lib_setup_everything;

IFC=H#003F; {CLEAR ALL PENDING INTERRUPTS}

IMASK=H#0000;

CALL set_control;

AXO0 = $IAMOK - 1; (could have used any buffer for
length}

DM (LOOP_CNTR) = AXO;

AX0 = txn_divisor;

DM(flipper) = AX0;

AX0 = 1;

DM(£flip) = AXO0;

AX0=0;

DM(num_samples) = AXO0;

DM(data_val_) = AXO0;

DM (mode_sel) = AX0;

DM(SIGNAL_FLAG_) = AXO0;

AX0 = OxXFFFF;

DM(0x3FFD) = AXO; {load TPERIOD)}

79




DM(0x3FFC) = AXO; {load TCOUNT}
AX0 = OXFF; :
DM(0x3FFB) = AXO; {load TSCALE}
AX0 = one_hour;
DM(NUM_SEC) = AXO0;
{====Initialize the transmit buffers======z==z=s==s=sz======)}
Ml=1;
CALL fill_mssg _buffer:
===Initilaize the addressing registers of 2105=z==========)
L3=%CTRLIN;
I3=~CTRLIN;
L2=%CTRLOUT;
I2=~CTRLOUT;
{====Initialize software flagsz=====z=z=zz=zz=zzz=z=zzsz=z=z=z=zzz===}
2X0=1; :
DM(FIRST_FLG)=AX0;
DM (DCB_FLG) =AX0;

{

il

AX0=0;
DM (DMODE_FLG) =AX0; { in control mode }
AY0=DM (CTRLOUT) ;

{====Initialize the DSP’'s SPORT1 Serial port registers=====} T~
L0 = 0; , { linear addressing for register } .
I0 = Ox3fef; { point to last DM cntrl reg } D
DM(IO,M1) = 0x04B7; { I2,M1,13,M]1 sportl autobuffer '

register }
DM(IO,M1) = 383; { rfsdivl }
DM(IO,M1) = 849; { sclkdivl }
DM(IO,M1) = B#0100000100011111; { =portl control

register: internal sclk & rfs, normal framing mode
frame sync not inverted, 16-bit word length }

{====Initialize the DSP’s interrupt registers=z=z=z==z==z===z===z}
ICNTL=0x17;
IMASK=B#000100; {only SPORT1 tx interrupt
enabled initially while in control mode }
{..... Set bit test mask for DCB bit, used in tx interrupt

state machine....}
AYO=DM(CTRLOUT); { test mask for DCB bit }
{.send first control word to switch codec to data mode....}

AX0=DM(I2,M1); { send first 1l6bits of ctrl word }

\
TX1=AX0; N
I0=0x3ffe; ,'\
L0=0; oo
DM(I0,M1) 0x0000; {No Wait states}

0x0c1l8; {system control reg: sportl
enabled }

DM(T(,M1)




{..... Wait for an interrupt indicating that transmit
register is ready for new data and that the 2105 has

received a 16bit word..... }
WAIT1: - AX1=DM(DMODE_FLG); { check dmode flag }
AR=PASS AX1; , :
IF GT JUMP GO_DMODE; { if set, in data mode }
JUMP WAITI1; { else, wait for initialization to

be completed from tx interrupt routine }

GO_DMODE :

L3=%DATAIN; ~{ init I3, L3 for rx autobuffer }

I3="DATAIN;

L2=%DATAOUT_; { init I2, L2 for tx autobuffer }

I2="DATAQUT_;

AX0=DM(I2,M1); { send first 1l6bits of data }

TX1=AX0;

AX0=0x0c18;

DM(O0x3FFF)=AX0; { turn on sportl }

IFC=B#000000111111; { clear all pending interrupts }

nop; { cycle for IFC latency }

ENA TIMER;

IMASK=B#000011; { sportl rx and timer interrupt on }

CALL main_; {Begin C progran}
. 1ib prog_term: JUMP ___lib_prog_term;
{:::::::Interrupt routines::::::::::::::::::::::======:====)
{ Note: AY0 contains a bit mask and must NOT be modified
elsewhere }
}
SETUPCONTROL: AXO0=DM(FIRST_ FLG), { first time through ? }

AF=PASS AX0;

IF NE JUMP DECR_FIRST; ( if so, wait until next word

transmitted}

AX0=DM(DCB_FLG) ;

AR=PASS AXO0;

IF EQ JUMP DCBFLG_SET;

AXO0=DM (CTRLIN) ; {DCB_FLG has not been set yet}

AR=AX0 XOR AYO; {check all incoming bits

including DCB bit}

IF EQ JUMP SET_DCB; {set flag if DCB was 0}

RTI;
DCBFLG_SET: AXO=DM{(CTRLIN); {DCB_FLG was set}

AR=AX0 AND AYO; {only check for DCB bit}

IF NE JUMP SETDMODE; {if DBC=1 ready for datamode}

RTI;

SET_DCB: AX0=0;
DM(DCB_FLG) =AX0;
AY0=0x0400;

81




AX0=DM(CTRLOUT); {DCB was 0, prepare to send DCB=1,
DFR=0} :

AR = AX0 OR AYO0;

DM (CTRLOUT) =AR;

RTI;

DECR_FIRST: AX0=0;
DM (FIRST_FLG)=AX0; { if first time, set flag=0 }

RTI;
SETDMODE: IMASK=0;
AX0=0x0418; {disable sportl}
DM(0x3FFF) =AX0; :

I2 = “DATAOUT_;

L2=0;

DM(I2,M1) = 0x0000; . {reset output & input
data buffers}

DM(I2,M1) = 0x0000; {initialize embedded

control bits}

DM(I2,M1) = 0xC000; {out line 1&2 enab,0 out
atten, speaker mute

DM(I2,M1) = 0x40F0; {PIO, etc) '

{To set the digital output pin (open-collector) set PIOl to

the desirable value.}
{P10=11,0VR=0, IS=0,LG=0,MA=15,RG=0}

DM(I2,M1) = 0x0000; {reset output & input
data buffers)

DM(I2,M1) = 0x0000; {initialize embedded
control bits)

DM(I2,M1) = 0xCO000; {same as aboveC000)}

DM(I2,M1) = Ox40F0;

{PI10=01,0VR=0,IS=0,LG=0,MA=15,RG=0}
{To set the digital output pin (open-collector)set PIOl to
the desirable value.}

AX0=0x001F;

DM (0x3FF2)=AX0; { sportl control: external tfs,
external sclk & rfs 16 bit words }

AX0=1; ' :

dm (mode_sel)=AX0; { set D/C high }

DM (DMODE_FLG) =AX0; { set data mode flag high }

RTI;

NEWDATA :
DIS BIT_REV;
DM(AR_save) = AR;
DM(AX0_save) = AXO0;
DM(AY1l_save) = AY1;
AY1l = DM(flipper);

82




AX0 = txn_divisor;

{this number is used as a divisor

to slow transmission rate}

AR = AX0 - AYl;

IF EQ CALL reset_flipper;

{reset flipper and assign or

incr buffer}

AY1l = DM(flipper);
AR = AY1l + 1;
DM(flipper) = AR;
AX0 = DM(£flip);
AR = PASS AX0;

IF NE JUMP second_half;

AX0=DM (DATAIN) ;

DM (DATAQUT_) =AX0;
AX0=DM(DATAIN+1) ;
DM (DATAOUT_+1)=AX0;

AX0 = DM(cntrl_2);
DM (DATAQOUT_+2) =AX0;
AX0 = DM(cntrl_l);

DM (DATAOUT_+3) =AX0;
AX0 = 1;
JUMP nd_end;

second_half:

AX0=DM (DATAIN) ;
DM (DATAOUT_+4)=AX0;
AX0=DM (DATAIN+1) ;

DM (DATAQUT_+5)=AX0;

AX0 = DM(cntrl_2);

DM (DATAOUT_+6)=AX0;

AX0 = DM{(cntrl_1);

DM (DATAOUT_+7) =AX0;

AX0 = 0;

nd_end:

DM(flip) = aX0;

AY1=DM(num_samples);

{ get LEFT channel data }

{ output LEFT channel data }
{ get RIGHT channel data }

{ output RIGHT channel data }

{ Toggle "flip"}

{ get LEFT channel data }
{ output LEFT channel data }
{ get RIGHT channel data }
{ output RIGHT channel data }

{ Toggle "flip"}

{the following code sets the

data_val_ flag}

AXO=min_samples;
AR = AY1-2AXO0;

IF GT JUMP clean_up:

IF EQ JUMP clean_up_1;

AR = AY1l + 1;
DM (num_samples) =
JUMP clean_up;

clean_up_1: AX0 = 1;
= AXO0;

DM(data_val_)

clean_up:

AY1l
AXO0
AR =

DM (AR_save) ;

DM(AY1l_save);
DM (AXO0_save) ;

AR;

{restore registers)

83




RTI; { return }

HOUR:

DM (AXOH_save) AX0;

DM (AY1H_save) AY1;
DM (ARH_save) = AR;

AY1l DM (NUM_SEC) ;

AX0 DM (SIGNAL_FLAG_);

AR = PASS AXO;
IF GT JUMP hour_end; ({prevents overriding an alarm

condition} 4
AR = PASS AY1;
IF GT JUMP hour_end; {only send every NUM_SEC
seconds} :
AY1l = one_hour;
AX0 = -1;
DM(SIGNAL_FLAG_) = AX0; {set flag to indicate IAMOK}
hour_end: ”

RTI;

AR = AY1l - 1;
DM(NUM_SEC) = AR;
AX0 = DM(AXOH_save);
AY1l = DM(AY1lH_save);
AR = DM(ARH_save);

.ENDMOD;

84




APPENDIX D: PROCEDURES FOR COMPILING NEW CODE AND EPROM
LOADING

Compiling New Code:

Below is a iisting of the DOS batch file C-LINK.BAT (also
listed in Appendix C). This file causes several actions to

occur.

asm2l 2105_hdr.dsp -1 -c -s

asm2l -1 -¢ -s -cp -DDMSTACK -DIMAGE=RAM -DANY=RAM
frame_lg.dsp

g2l clink.c frame_lg.cbj -a 2105.ach -mreserved=i2,i3 -v
-runhdr 2105_hdr.obj -g -save-temps -Wall -0 cexample

spl2]1 cexample cprom -i -loader -bs 2048 -bb 2048

The first line assembles the header file 2105_hdr.dsp.
This file contains the interrupt table settings, interrupt
handlers and initialization routines.

The second line was included to correct a bug in the
software sent by Analog Devices. The bug was in the file
frame_lg.dsp. This program is used by C-routines when calling
and returning from subroutines. It is only supposed to push
and pop non-dag (non-Data Address Generator) registers
(M,I,and L registers) on a stack. The bug came from the fact
that the routine would push and pop registers I2 and I3.
These registers are supposed to be reserved for the user and
are the only registers available for autobuffering. Without
the modification to frame_lg.dsp, a return from some routine
could possibly load an erroneous value into I2 and I3. This

~would cause unpredictable results in operations using
autobuffering. The file frame_lg.dsp can be corrected by
removing all operations that affect 12 and I3.

The third command line compiles clink.c and links it with
frame_lg.obj and 2105_hdr.obj. If more than one file C-file
is to be compiled and linked, simply replace clink.c with
@files_all. Where files_all is an ASCII file containing the
C-files to be compiled (one path\filename per line).

The last line is the PROM splitter command line. The PROM
slitter converts executable into a format that can be
downloaded onto an PROM or EPROM. The -i switch converts the
executable code into Intel hex format. The -loader switch
automatically splits large code up between the boot pages as
specified by the -bs and the -bb switches. The -bs switch
specifies the boot page size in while the -bb switch specifies
the boot boundaries. The splitter will put the output in a
file named cprom.bnm.

85

L




EPROM Loading

The following 'procedure describes the process for
programming an EPROM at the Naval Postgraduate School.

1. Erase one D27C512 EPROM for 20-30 minutes under an UV
light. The digital lab manager in Bullavd has an UV 1light

available for this purpose.

2. Ensure the cprom.bnm file is loaded on a 360KB 5.25"
floppy disk and insert disk containing *.bnm in drive a:\.

3. While the EPROM is being erased, goto the PC in the
digital lab that has the Modular Circuit Technology’s (MCT)
PROM burner installed and type mct at the C:> prompt.

4. At the main menu select the Utility option.
5. Pick opt. 0 to convert the *.bnm file to binary format.

6. Enter the full path name of the input file when prompted
(i.e. a:\cprom.bnm).

7. Enter the output file name when prompted.

8. Enter I (Intel) for source file hex format.

9. Choose the Programmer option fromithé main menu.

10. Choose option 1l at the next menu to program an EPROM.
11. At the MFR prompt enter 08 for Intel chip.

12. Enter 12 for the type of chip (D27C521)

13. At the next menu choose option 2 to load the blnary file
into the buffer. -

14. At filename prompt, enter the full path name of the
binary file (i.e. a:\cprom.bin).

15. Set load address = 0.

16. Place an erased EPROM in the MCT unit as illustrated on
top of the unit.

17. Select option A. This will blank check, program, and
verify the EPROM. .

18. If the erased EPROM is locked into the MCT ZIF socket,
enter Y at the "Ready to Start?" prompt. ,

86




19. When the verification is complete enter <CR> at the
prompt and remove the EPROM.

20. With power secured to the DSP board, insert the newly
programmed EPROM into Boct Memory socket. Ensure chip
orientation is correct. Pin #1 should be closest to jumpers

J1l and J2.

21l. Program execution will begin at power-up or when reset
switch S1 is pressed.

87




10.

11.

LIST OF REFERENCES

Department of Defense, Unmanned Air Vehicles (UAV)
Master ‘Plan, Program Executive Officer,
Mr. Robert Glomb, Washington D.C., March 1993.

Kaltenberger, B. R., Unmanned Air Vehicle/Remotely
Piloted Vehicle Analysis for Lethal UAV/RPV, Master's
Thesis, Naval Postgraduate School, Monterey, California,

September 1993.

Dickson, Paul, "Wiring down the war," in The Electronic
Battlefield, Indiana University Press, Bloomington,

Indiana, 1976, pp. 96-98.

Rodgers, A. L., and others, Surveillance and Target
Acquisition Systems, Brassey's Defence Publishers,
Oxford, 1983, pp. 164-170.

Bergin J. D., "The electronic battlefield," in United
States Army in Vietnam. Military Communications, a Test
for Technology, Center of Military History, United
States Army, Washington, D.C., 1986, pp. 392-393.

Jane’s Battlefield Surveillance Systems, E. R. Hooton,
and Kenneth Munson, eds., 5% ed., Jane’s Information
Group Limited, Coulsdcn, Surrey, United Kingdom, 1993,

pp. 51-52.

Interview between Mr. T. Reynolds, Mr. W. Dense, Mr. P.
Winters, Naval Surface Warfare Ce:iter, Silver Springs,
Maryland, and the author, 19 November 1993.

- Stremler, F. G., Introduction tc Communication Systems,

Third Edition, Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1992, pp.589-594.

Innovative Integration, SBC-31 Hardware Reference
Manual, Innovative Integration, Inc., Moorpark, '
California, 1994, pp. 1-11.

EMB-1601A Embedded Digital Signal Processor & DSP
Development System, Wavetron Microsystems, version 1.10,

June 1993.

Telephone conversation between Brent Roman, Wavetron
Microsystems and the author, 22 April 1994.

88




INITIAL DISTRIBUTION LIST

- No. Copies

. - Defense Technical Information Center

Cameron Station
Alexandria. Virginia 22304-6145

 tibrary, Cnde 52

Naval Postgraduate School
Monterey, California 93943-5101

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Professor Michael K. Shields, Code EC/SL
Department of Electrical and Computer Englneerlng
Naval Postgraduate School

Monterey, California 93943-5121

Professor Murali Tummala, Code EC/TU

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, California 93943-5121

Professor Richard M. Howard, Code AA/HO
Department of Aeronautics and Astronautics
Naval Postgraduate School

Monterey, California 93943-5106

Professor lIsaac I. Kaminer, Code AA/KA
Department of Aeronautics and Astronautlcs
Naval Postgraduate School

Monterey, California 93943-5106

LT Donald B. Howard
3216 Marshall Rd.
Ottawa, Kansas 66067

Farid Dibachi

Wavetron Microsystems

1197 Oddstad Drive

Redwood City, Celifornia 94063

89

2




